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II. Diagnosing short-term dynamics from SAR

Conclusion

Context

* TC intensity is determined by the strength of the eyewall convection, which relies on an interplay
between the symmetric secondary circulation and a range of asymmetric processes that act to dissipate
or aggregate the vorticity from local to vortex scale

* SAR is able to measure extreme winds at kilometric resolution
—> captures the strength and spatial distribution of winds in the eyewall vicinity

* Eyewall mesovortices, convective bursts and asymmetry organization are directly observable

* SAR measures winds at the surface : grants access to valuable information on boundary layer dynamics

* SAR acquisition rate is still limited :

» How can we derive dynamically-relevant information from SAR given their limited temporal resolution ?

> Is this information able to characterize intensity changes and traduce the physical processes that

govern these changes ?
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Context I. SAR measurement of inner-core asymmetry II. Diagnosing short-term dynamics from SAR Conclusion

|. SAR measurement of inner-core asymmetry

ESA processed NRCS TRAI. 2018/09/28, 09:35:04
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Image processing : NRCS conversion to wind speed + TC center retrieval

* A dataset of 188 SAR images was used to
derive metrics measuring eyewall and
maximum wind asymmetry

* SAR image processing relies on the dual-
polarization inversion algorithm developed
by Mouche et al., 2017

* Maximum wind V},,,,, and radius of maximum
wind R, ,, were validated by Combot et al.
2021 against best-track and SFMR

A processing method was designed to retrieve :
* centers
* mean profile eyewall & near-core slope
» azimuthal distributions of max. wind, eyewall radial
wind gradient, radius of maximum wind and eyewall
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Extraction of characteristic signals : azimuthal power density spectra (asymmetric) and mean profile radial gradients (symmetric)
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* Intensity and internal structure :
* Near-core and eyewall radial gradients

|. SAR measurement of inner-core asymmetry

Observations of Tropical Cyclone Inner-Core Fine-Scale Structure, and Its Link to
Intensity Variations?

LEO VINOUR,® SWEN JULLIEN,® ALEXIS MOUCHE,* CLEMENT COMBOT,* AND MORGAN MANGEAS®

Statistics on the SAR database 5
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increase with intensity

* Asymmetry decreases with intensity

increasing intensity
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* Power spectral density in the maximum wind
ring shifts from large to local scale with
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Context I. SAR measurement of inner-core asymmetry II. Diagnosing short-term dynamics from SAR Conclusion

|. SAR measurement of inner-core asymmetry Cross.comelations: 0.65 (X/2). 027 (1/2)

40 A

Observations of Tropical Cyclone Inner-Core Fine-Scale Structure, and Its Link to
Intensity Variations? 30 A
LEO VINOUR,* SWEN JULLIEN,* ALEXIS MOUCHE,® CLEMENT COMBOT,* AND MORGAN MANGEAS® 20 4
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Dynamical content of SAR snapshots 7
Requires colocation with IBTrACs intensification
rate (IR) estimates, causing a loss of coherence
Direct comparison of IRs with internal
descriptors :

dV/dRew — Vimax/RMW
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* Eyewall radial gradient shows a slight
. . . Eyewall profile curvature vs. V., &
connection to short-term intensity changes intensification rate (from IBTrACs)

* Asymmetry shows no significant trend on
scatter plots
Binning by life cycle phase (decline, trough,
intensification, intensity peak) :
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Normalized Variance of Azimuthal Signal

« Slightly lower variance for troughs & ‘
intensifications ‘
No visible correlation with the WN distribution, T R Eyeshope
except using ML Classiﬁcation Mean variance of 4 azimuthal signals separated

by life cycle phase :
decline (green), trough (blue),
intensification (purple), peak (yellow)
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ll. Diagnosing short-term dynamics from SAR : numerical simulation of reqular SAR acquisitions

Diagnosing Tropical Cyclone Intensity Variations from
the Surface Wind Field Evolution

LEO VINOUR." SWEN JULLIEN,* AND ALEXIS MOUCHE?

Extended analysis of internal dynamics was
performed using realistic simulations

* Analyses performed on SAR were reproduced

* A Wave Number Transition (WNT) parameter is
developed to measure the evolution of power
spectrum between low and high WNs in the
maximum wind ring and eyewall
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Simulation setups : seven events with realistic settings but
permissive nudging to ensure small domain autonomy

spectrum density change and corresponding snapshots

FANI simulation : extraction of 2 events of strong max. wind contour
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ll. Diagnosing short-term dynamics from SAR

Diagnosing Tropical Cyclone Intensity Variations from
the Surface Wind Field Evolution

LEO VINOUR." SWEN JULLIEN,* AND ALEXIS MOUCHE?

* Case study + statistics on seven simulations :

08/05/2024

The temporal change in the power spectrum
distribution goes with short-scale intensity
fluctuations (~6h)

Intensity restoration events are preceded by
vortex to local-scale transpositions of the
spectrum power density in the maximum wind
ring

Local-scale wind variance (>WND5) increase
traduces the generation of convective bursts
as indicators of intensity restoration

Increase of vortex-scale asymmetry (i.e.
growth of WN1-2 asymmetry) on the contrary
tends to indicate deterioration/weakening
events
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Statistics over all WRF outputs : radial gradients changes (left) and azimuthal
dissipation/polarization (right) averaged over all RI (top) and RW (bottom) events.
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Context I. SAR measurement of inner-core asymmetry II. Diagnosing short-term dynamics from SAR Conclusion

Summary and conclusions

A large dataset of SAR-extracted wind fields is used to analyze the internal structure of Tropical Cyclones

* Wind fields were processed to retrieve center, mean profile (eyewall+near-core graidents), and azimuthal distributions (power density
spectrum of max. wind contour & eyewall signals)
Dependence on intensity : more intense TCs = U-shaped eyewall, contracted profile, more symmetric with less polarized asymmetry (max. wind contour

variance - —> high WNs)
Dependence on dynamics : consistent trends are hard to establish : slight trend for more U-shaped profiles w/ intensifications; lower asymmetry during

troughs/intensifications than peaks/declines

» Extension of SAR analysis to the temporal domain are carried out with high-resolution simulations to characterize more consistently the
evolution of asymmetry in direct conjunction with intensity
* A metric is set up to measure the temporal evolution of the azimuthal power spectral density between local and vortex-scale
* Max. wind speed contour tends to evolve towards more distributed asymmetry during Rl events, and more polarized asymmetry during RW, with an
anticipation of ~6h on intensity changes

Perspectives :

» SAR diagnoses of asymmetry (notably max. wind contour) can have a direct value for forecast improvement provided more regular acquisitions : RCM in processing
will soon expand the wind dataset

> Exploit the 3D wind field. We limited analyses to 1D distributions : convenient for statistics (low number of variables) but lots of aspects remain to be dealt with.
Recent work aims at studying BL inflow and inner/outer-core separation through the 2D distribution of WNs 5-20 : more to come !

| Variance of WNs 5-20 for one SAR image |
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lll. Symmetric BL structure

Conclusion

lll. Symmetric BL structure : a new perspective issued from high resolution

Observable spiral signatures in the SAR wind field can be extracted

SAR wind field +
visible spiral signatures

through WN decomposition and sum of WNs 5-20

™

Polar Fourier

decomposition _|->| Sum of WNs 5-20 '7

Average spiral band inflow is constant in the outer-core (mean
value~33°)

Spiral signatures are hard to detect under 2.5-3 Rmax

Radius/RMW

Constant inflow regime traduces a property of the boundary layer :
amplitude of the inflow can be identified as a drag coefficient over a
characteristic BL height

Link between inflow angle and drag : starting from the momentum NS equation

. . . . u A

in stationnary case, with m~rv the relative angular momentum, tana = 5= v
-

with 4 an effective frictional term.

Identificating with the stress component integrated over the BL, we get :
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lll. Symmetric BL structure : a new perspective issued from high resolution

* In the inner-core, heterogeneity denoted by WNs 5-20
becomes difficult to measure : variance is much larger, but
associated to small-scale patches instead of spirals

* The transition between inner and outer core can be
identified by a critical radius on individual profiles of

variance

* This radius compares well with
the radius of onset of
potential vorticity (and vertical
velocity)

» WN decomposition allows to
measure properties of the
inflow layer and of the size
and amplitude of the
convective eyewall column

Ekman pumping :

Assuming C,;1v? = cst,wg becomes large for w, > f

WE(r)=li

rdr

|

Cyrv?
w:+f

- we estimate the characteristic radius R, directly

from the profile of w.
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