# Objectively Identifying Transverse Cirrus Bands in Tropical Cyclones using a Convolutional Neural Network 17D.6

John Mark Mayhall<sup>1</sup> ,Ryan Wade<sup>1</sup>, Andrew White<sup>1</sup>, Patrick Duran<sup>2</sup>







1

<sup>1</sup> University of Alabama in Huntsville, <sup>2</sup> Marshall Space Flight Center

# Motivation

- TCBs have been subjectively associated with the TC diurnal pulse (Dunion et al. 2014)
- Possible relationship of TCBs to TC intensity and structure has not been quantified.
- TCBs have been related to low static stability and high vertical wind shear in the upper levels (Kawashima 2021) and, consequently, smaller Richardson number.



# Methods

- Miller et al. (2018) developed an image classification model to identify TCBs in MODIS true-color imagery.
  - The model determined whether TCBs existed in an image, but not their spatial structure
- We will use a U-Net to identify the spatial structure of TCBs in an image
- Channel 13 (Clean-IR, 10.35μm) and 8 (Upper-Level Water Vapor, 6.2μm) were chosen due to their ability to work in the day and night time.





## Data

- Tropical cyclone best track data is from the HURDAT2 dataset (Landsea and Franklin 2013).
- Environmental wind shear data is from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) dataset (DeMaria and Kaplan 1994).
- A total of 184 training images from 2018-2023 were used, along with 58 validation images, to create the model.
- A total of 104 Atlantic 2018-2022 tropical cyclones are used to create the study results (not for training).
  - 2023 is not included because the season had not concluded at the time the results were first produced.



# U-Net Training Flow Chart

- U-Net: Convolutional Neural Network (CNN) model that can downsample and upsample images to learn.
- Left path of figure: repeated convolutions, max pooling, batch normalizations, and activation layers that decrease the image's size while increasing the number of convolution filters (Ronneberger et al. 2015).
- Right path of figure: generally the same as the left path, except that it increases the image size (Ronneberger et al. 2015).
- Arrows between the two paths: the connection present between the down and upsample paths, which accounts for information lost in downsampling (Ronneberger et al. 2015).



#### Hurricane Iota (AL312020), Advisory 8A, Winds of 74 knots

Transverse Cirrus Bands Probabilities for Nov 15, 2020 at 12:00 UTC Channel 13 Brightness Temperatures (°C) TCB Probabilities



6

### Hurricane Sam

Transverse Cirrus Bands Probabilities for Sep 26, 2021 at 11:00 UTC



# Error Statistics and the Jaccard Score

- $J(T,P) = \frac{|T \cap P|}{|T \cup P|}$
- Where T is the true value and P is the predicted value



- Error statistics were computed using 43 manually identified TCB images that were not included in the training dataset.
- The maximum Jaccard Score of 0.36 occurred at a probability threshold of 0.48.
  - Threshold: used as the cutoff for whether TCBs are present at a pixel.

# **Research Questions**

- Is there a relationship between TCBs and intensity change?
- Is there a relationship between TCBs and rapid intensification?
- Is there a relationship between TCBs and the diurnal cycle?
- In what shear-relative quadrants of the storm do TCBs tend to occur?



Transverse Cirrus Bands Probabilities for Sep 09, 2022 at 12:00 UTC

# TCBs, Tropical Cyclone Intensity, and Rapid Intensification



- Rapid Intensification: 30-knot wind increase or more in 24 hours (NHC).
- Stronger tropical cyclones and rapidly intensifying tropical cyclones have more TCBs.



## TCBs and the Diurnal Cycle



More TCBs occur in the evening hours (around 6 p.m. local time) than in the morning hours (around 6 a.m. local time). Shear-Relative Occurrence of TCBs



- TCB pixels are sorted into 50 kilometer and 0.5 degree bins.
- Greater TCB occurrence is related to the downshear quadrants of tropical cyclones.

# Conclusion and Future Work

- TCBs are more common in stronger TCs, but the relationship to intensity change is not yet clear.
  - Appear to be more common in rapidly intensifying TCs than those that are not rapidly intensifying.
  - Appear to be more closely related to previous intensity change the future intensity change.
- TCBs are more common in the evening hours than in the morning hours.
- TCBs occur more frequently in the downshear quadrants of tropical cyclones.
- More research into the relationship of TCBs and future and past intensity changes will be done.
- Additional error statistics and significance testing will be performed to assess the robustness of these relationships.
  - This includes improving the U-Net through additional training cases and architecture modification.

# References

AWS, N., AWS S3 Explorer. <u>https://noaa-</u> <u>goes16.s3.amazonaws.com/index.html</u> (Accessed April 3, 2024).

DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin. *Weather and Forecasting*, **9**, 209–220, <u>https://doi.org/10.1175/1520-</u> 0434(1994)009<0209:ASHIPS>2.0.CO;2.

Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The Tropical Cyclone Diurnal Cycle of Mature Hurricanes. *Monthly Weather Review*, **142**, 3900–3919, <u>https://doi.org/10.1175/MWR-D-13-00191.1</u>.

# References

Kawashima, M., 2021: A Numerical Study of Cirrus Bands and Low-Static-Stability Layers Associated with Tropical Cyclone Outflow. *Journal of the Atmospheric Sciences*, **78**, 3691–3716, <u>https://doi.org/10.1175/JAS-D-21-0047.1</u>.

Knox, J. A., A. Scott Bachmeier, W. Michael Carter, J. E. Tarantino, L. C. Paulik, E. N. Wilson, G. S. Bechdol, and M. J. Mays, 2010: Transverse cirrus bands in weather systems: a grand tour of an enduring enigma. *Weather*, **65**, 35–41, <u>https://doi.org/10.1002/wea.417</u>.

Landsea, C. W., and J. L. Franklin, 2013: Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. *Monthly Weather Review*, **141**, 3576–3592, <u>https://doi.org/10.1175/MWR-D-12-00254.1</u>.

# References

Miller, J., U. Nair, R. Ramachandran, and M. Maskey, 2018: Detection of transverse cirrus bands in satellite imagery using deep learning. *Computers & Geosciences*, **118**, 79–85, <u>https://doi.org/10.1016/j.cageo.2018.05.012</u>.

O'Shea, K., and R. Nash, 2015: An Introduction to Convolutional Neural Networks. <u>https://doi.org/doi.org/10.48550/arXiv.1511.08458.</u>

Ronneberger, O., P. Fischer, and T. Brox, 2015: U-Net: Convolutional Networks for Biomedical Image Segmentation.

# Extra Slides

### Potential New Model?- First Kernel size of 5\*5 instead of 3\*3





#### Model when adding in GOES-16 ABI Band 4 (1.37 um)



# TCB Comparison to Different RI Thresholds

