36th Conference on Hurricanes and Tropical Meteorology

Modifications to Three-Dimensional Turbulence Parameterization for Tropical Cyclone Simulation at Convection-Permitting Resolution

Gengjiao Ye^{1,2}, Xu Zhang², Hui Yu²

¹ School of Geographic Sciences, East China Normal University, Shanghai, China ² Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

6 May, 2024

1. Background

• To accurately represent the subgrid-scale (SGS) turbulent fluxes in numerical weather prediction models (NWP) is important for simulating the dynamic and thermal structure of the TC.

- Drawbacks for the turbulence parameterization at convection-permitting resolution (CPR:1~4 km)
- 1) 1D PBL schemes are still mainly used (excessive turbulent transport)
- 2) 1D and 3D schemes are based on the Eddy-diffusivity closure (downgradient)
- 3) All the schemes were developed within PBL (unable to accurately describe the turbulence above PBL)

1. Background

• A new SGS model, **H-gradient closure**, was proposed by Moeng et al. (2010)

 $\overline{u_i'u_j'}^{\Delta} = C_s \frac{\Delta^2}{12} \left(\frac{\partial \overline{u_i}^{\Delta}}{\partial x} \frac{\partial \overline{u_j}^{\Delta}}{\partial x} + \frac{\partial \overline{u_i}^{\Delta}}{\partial y} \frac{\partial \overline{u_j}^{\Delta}}{\partial y} \right) \qquad \overline{u_i's'}^{\Delta} = C_s \frac{\Delta^2}{12} \left(\frac{\partial \overline{u_i}^{\Delta}}{\partial x} \frac{\partial \overline{s}^{\Delta}}{\partial x} + \frac{\partial \overline{u_i}^{\Delta}}{\partial y} \frac{\partial \overline{s}^{\Delta}}{\partial y} \right) \qquad 1) \text{ scale aware}$

• The H-gradient closure was already shown good performance in the simulation of nearequilibrium tropical convection and supercell convection systems (Verrelle et al., 2017; Hanley et al., 2019; Strauss et al., 2019; Sun et al., 2021).

This work aims to:

- 1) Evaluate the performance of H-gradient closure in TC at CPR
- 2) Improve the <u>scale-adaptive three-dimension turbulent parameterization</u> SMS-3DTKE scheme (Zhang et al., 2018)

• Benchmark: 3 km results coarse-grained from idealized TC LES (200 m)

$$\overline{u_i'\varphi'}^{\Delta} = \overline{\left(u_i - \overline{u_i}^{\Delta}\right)} \left(\varphi - \overline{\varphi}^{\Delta}\right)^{\Delta}$$

Ι

JES:	Initial and boundary conditions (3 km-run)		
	Simulated period	144	hours
	Domain	1	
	Horizontal grid spacing	3 km	
	Horizontal grid number 201*201		*201
	Domain area (km*km)	600*600	
	Vertical layer number	81 (25 km)	
	Turbulence scheme	YSU	
	Microphysics	Thompson	
	wrfout (time interval)	5 min	
	Setup of LES		
_	Restart (LES)	RI	Mature
		72 -78 h	135-141 h
	Horizontal grid spacing	200 m	
	Horizontal grid number	3000*3000	
	Turbulence scheme	SMS-3DTKE	

• H-gradient:

$$\overline{u_i'u_j'}^{\Delta} = C_s \frac{\Delta^2}{12} \left(\frac{\partial \overline{u_i}^{\Delta}}{\partial x} \frac{\partial \overline{u_j}^{\Delta}}{\partial x} + \frac{\partial \overline{u_i}^{\Delta}}{\partial y} \frac{\partial \overline{u_j}^{\Delta}}{\partial y} \right)$$
$$\overline{u_i's'}^{\Delta} = C_s \frac{\Delta^2}{12} \left(\frac{\partial \overline{u_i}^{\Delta}}{\partial x} \frac{\partial \overline{s}^{\Delta}}{\partial x} + \frac{\partial \overline{u_i}^{\Delta}}{\partial y} \frac{\partial \overline{s}^{\Delta}}{\partial y} \right)$$

• Eddy-diffusivity:

$$\overline{u_i' u_j'}^{\Delta} = -K_M \left(\frac{\partial \overline{u_i}^{\Delta}}{\partial x_j} + \frac{\partial \overline{u_j}^{\Delta}}{\partial x_i} \right)$$
$$\overline{u_i' s'}^{\Delta} = -K_H \frac{\partial \overline{s}^{\Delta}}{\partial x_i}$$

• Transport direction of turbulent flux:

$$\overline{u_i'u_j'}^{\Delta} \frac{\partial \overline{u}^{\Delta}}{\partial x_i} \qquad \overline{u_i's'}^{\Delta} \frac{\partial \overline{s}^{\Delta}}{\partial x_i}$$

Negative: along the gradient Positive: countergradient

Heat fluxes at mature stage (t = 141)

• H-gradient closure is capable of accurately representing the countergradient fluxes in TC

Heat fluxes at mature stage (t = 141)

• The H-gradient closure can capture the significant upward heat transports in the eyewall throughout the troposphere.

Spatial correlation coefficients with height

Mean spatial correlation coefficient

Turbulent flux	Curbulent flux Eddy-diffusivity H	
$\overline{u'q'_{v}}$	0.047	0.713
$\overline{u'\theta'}$	0.112	0.753
$\overline{u'v'}$	0.078	0.701
$\overline{w'q'_{v}}$	0.618	0.442
$\overline{w' heta'}$	0.027	0.427
$\overline{w'q'_{v}}$	0.316	0.445

Mean kinetic energy (MKE/E): Resolved scale

$$\frac{\partial E}{\partial t} + \overline{u}_{j} \frac{\partial E}{\partial x_{j}} = \overline{u_{i}'u_{j}'} \frac{\partial \overline{u}_{i}}{\partial x_{j}} - \frac{\partial \overline{u}_{i} \overline{u_{i}'u_{j}'}}{\partial x_{j}} + \delta_{i3}\overline{u}_{i}g - \frac{\overline{u}_{i}}{\overline{\rho}} \frac{\partial \overline{p}}{\partial x_{i}} - \nu \frac{\partial \overline{u}_{i}}{\partial x_{j}} \frac{\partial \overline{u}_{i}}{\partial x_{j}}$$

Energy transfer: $\overline{u_{i}'u_{j}'} \frac{\partial \overline{u}_{i}}{\partial x_{j}}$

Negative: Resolved scale (e) → Subgrid scale (E) Scatter Positive: Subgrid scale (E) → Resolved scale (e) Backscatter

• H-gradient closure is capable of capturing both the scatter and backscatter of energy

H-gradient **SMS-3DTKE** $\partial \overline{u'u'}$ $\partial \overline{u'v'}$ $\partial u'w'$ $\partial \overline{u}$ ∂t ∂y ∂x ∂z . $\partial \overline{v}$ $\partial u'v'$ $\partial v' v'$ $\partial v'w'$ ∂t ∂x ∂y ∂z $\partial \overline{w}$ $\partial w'u'$ $\partial w'v'$ $\partial w'w'$ ∂t ∂x ∂y ∂z $\partial \overline{\theta}$ $\partial \overline{\theta' w'}$ $\partial \overline{\theta' u'}$ $\partial \overline{\theta' v'}$ ∂t ∂x ∂y ∂z $\partial \overline{q'_{vci}u'}$ $\partial \overline{q'_{vci}v'}$ $\partial \overline{q'_{vci}w'}$ $\partial q_{\scriptscriptstyle vci}$ ∂t ∂x ∂y ∂z

SMS-3DTKE-H

Horizontal fluxes: replaced by H-gradient

Vertical fluxes: within PBL, original SMS-3DTKE

above PBL, SMS-3DTKE +H-gradient

$$\overline{w'\theta'} = -K_H \frac{\partial \overline{\theta}}{\partial z} + \overline{w'\theta'}_{PBL}^{NL} + C_s \frac{\Delta^2}{12} \left(\frac{\partial \overline{w}}{\partial x} \frac{\partial \overline{\theta}}{\partial x} + \frac{\partial \overline{w}}{\partial y} \frac{\partial \overline{\theta}}{\partial y} \right)_{above PBL}$$

Idealized TC: Heat fluxes at mature stage (t = 138)

Idealized TC: Heat fluxes at mature stage (t = 138)

-0.8

-1.2

• SMS-3DTKE-H scheme significantly improves the simulation of intensity and structure of idealized TC.

Real-time TC: Soudelor (2015)

• SMS-3DTKE-H scheme improves the TC intensity more significantly.

Real-time TC: Soudelor (2015)

• SMS-3DTKE-H scheme improves the simulation of TC size, shape and location of eyewall, especially the secondary wall structure.

Real-time TC:

• SMS-3DTKE-H is able to simulate more refined coherent structures, such as horizontal convection rolls.

Relative vorticity (Shaded) & Vertical velocity (contours)

- (1) Compared to the Eddy-diffusivity closure, the H-gradient closure is more appropriate for representing SGS fluxes in the TC at CPR.
- (2) H-gradient closure is capable of capturing both the scatter and backscatter of energy.
- (3) By implementing the H-gradient closure, the modified SMS-3DTKE (SMS-3DTKE-H) scheme improves the simulation of TC intensity and structure.

6 May, 2024

36th Conference on Hurricanes and Tropical Meteorology

Thank you for your attention!

Gengjiao Ye

Email : yegj@typhoon.org.cn