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1. ML-NVI

The Machine Learning-Nighttime Visible Imagery (NVI)
algorithm is a Fully Connected Neural Network consist-
ing of ten input features, three hidden layers (two with
eight nodes and one with four), and a single output layer
node (Pasillas 2023). The ten input features are derived
from four infrared (IR) wavelengths and their brightness
temperature differences (BTD)s (Pasillas 2023, 14). Al-
though originally trained and tested on Visible Infrared
Imaging Radiometer Suite (VIIRS) IR channels, the wave-
lengths selected closely align with geostationary satel-
lite channels, which allowed for validation using Geosta-
tionary Operational Environmental Satellite (GOES) Ad-
vanced Baseline Imager (ABI) (Pasillas 2023). The three
hidden layers use Rectified Linear Unit (ReLU) activation,
which does not saturate for positive values, an Adam op-
timizer of .001 (the default value), and a mean square
error loss function (Geron 2022; Pasillas 2023). The sin-
gle output layer, which uses a Sigmoid activation func-
tion, computes a pixel-by-pixel synthetic lunar reflectance
value representing lunar reflectance values expected dur-
ing a full moon even in the absence of moonlight (Pasillas
2023, 16).

NVI uses the VIIRS Day/Night Band (DNB) Miller-
Turner Lunar Reflectance values as truth data (Miller and
Turner 2009; Pasillas 2023). It requires no scaling be-
cause it is based on a lunar spectral irradiance data set,
which makes it possible to calculate a quantitative value
ranging 0-1 (Miller and Turner 2009; Pasillas 2023). Pasil-
las (2023) developed two NVI models, one using VIIRS
Bands 13 (4.05µm), 14 (8.55µm), 15 (10.763µm), and
16 (12.01µm), and the other using ABI Bands 7 (3.9µm),
11 (8.4µm), 13 (10.3µm), and 15 (12.3µm). The VIIRS
model demonstrated a root mean square error (RMSE) of
12.05 (lunar reflectance), while the ABI model exhibited
RMSE of 16.2 when compared to true lunar reflectance
values at full moon (Pasillas 2023, 45).

The principal function of NVI in tropical cyclone (TC)
forecasting is highlighting upper-level cirrus clouds in-
creasing the clarity of features associated with the low-
level circulation center. Figure 1 shows NVI imagery in
comparison to shortwave infrared (SWIR) (3.9µm) and
longwave infrared (LWIR) (11.2µm). The white box in im-
age 1 emphasizes how NVI clearly distinguishes upper
level cloud features with distinct reflectivity differences for
thick upper level clouds (white) and thin cirrus (grey). In
contrast, the SWIR (2) and LWIR (3) images fail to distin-
guish the upper level features. The white box in image 4
demonstrates NVI’s ability to delineate cloud phase, ef-
fectively “seeing through" the upper level cirrus clouds
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providing a clear visual of the TC eye; this eye clarity is
not observed in SWIR (5) or LWIR (6).

FIG. 1. Time series of NVI (1,4), SWIR (2,5), and LWIR
(3,6) imagery for TS Ampil on 21 July 2018 at 1200Z and
1300Z.

2. ARCHER-2

ARCHER-2 utilizes TC scenes from microwave (specif-
ically 37 and 85-92 GHz), SWIR (3.9µm), LWIR
(11.2µm), visible (.64µm), and Advanced Scatterometer
(5.25GHz) to determine an objective center fix. It does
this through pattern recognition based on an objective
analysis of a combined spiral and ring score, as well as a
minor distance penalty (Wimmers and Velden 2016, 198).
The spiral score assesses the center of the TC by com-
puting a gridded vector field to measure the relative align-
ment of the brightness temperature gradient of the image
and a spiral (or curved banding) pattern (Wimmers and
Velden 2016, 198). The ring score evaluates the relative
alignment of the brightness temperature gradient and an
eye-like ring pattern by calculating the dot product of ra-
dially oriented unit vectors and the image gradient (Wim-
mers and Velden 2016, 198). Finally, ARCHER-2 calcu-
lates a minor distance penalty, which varies as the dis-
tance squared from a given initial center position guess,
to reduce the probability of center fixing on peripheral
features (Wimmers and Velden 2016, 198). For opera-
tional analysis, the initial center position guess is based
on a short-term forecast from an operations center inter-
polated to the time of the satellite image (Wimmers and
Velden 2016, 198). In retrospective studies, such as this
one, an interpolation from a best track reanalysis is ad-
vised (Wimmers and Velden 2016, 198). The weighted
average of these three metrics - spiral score, ring score,
and distance penalty - constitute the combined score; the
position of the maximum combined score is the center
fix (Wimmers and Velden 2016, 199). Figure 2 provides
an example of the ARCHER-2 spiral, ring, and combined
score contours. The white plus sign is the initial center

1

mailto:


FIG. 2. ARCHER-2 spiral (left), ring (middle), and com-
bined score (right) contours for TS SonTinh on 17 July
2018 at 1600Z.

position guess; the magenta circle in the combined score
image (right) is the center fix location.

For each forecast period, ARCHER-2 assesses a cen-
ter fix position for each imagery type, then selects the
sensor with the greatest center fix certainty, referred to
as the source sensor, for use as the center latitude and
longitude in TC retrieval algorithms. Center fix certainty is
a function of the expected error, which follows the gamma
distribution provided in Equation 1:

PDF(x) = α
2xe−αx (1)

where α characterizes the distribution of the expected er-
ror (x) (Wimmers and Velden 2016, 202). In addition to
the α parameter, Wimmers and Velden (2016) assessed
that the best indication of accuracy is the spacing of the
combined score contours surrounding the center fix loca-
tion; therefore, the tighter the contour spacing, the lower
the expected error for each sensor (Wimmers and Velden
2016, 202). This led to the development of the Confi-
dence Score (η), which assesses the difference between
the maximum combined score (or center fix) and the high-
est score ≥ .75o latitude and longitude from the cen-
ter fix location (Wimmers and Velden 2016, 202). Alpha
and confidence score were then used to calibrate the ex-
pected error of a center fix, as shown in Equation 2:

α(η) = msensorη +bsensor (2)

where msensor and bsensor are the sensor-specific slope
and offset, respectively. Ultimately, it is the highest alpha

ARCHER-2 Geostationary Sensor Parametric Fit
Sensor mlo blo mhi bhi

DNB/Visible 14.44 -0.83 14.64 3.45
SWIR 8.68 -0.37 14.2 -0.24
LWIR 9.89 -2.07 9.26 1.95

TABLE 1. Sensor specific slope and offset values used
by ARCHER-2 to relate confidence score and alpha. The
"lo" subscript applies to storms with maximum velocity be-
low 65 knots; "hi" applies to storms greater than 85 knots.
For maximum wind velocities between 65 and 85 knots,
alpha is the weighted average for both “lo" and “hi".

score that determines the source sensor for a forecast
period. Sensor-specific fit parameters between alpha and
confidence score are provided in Table 1 (Wimmers and
Velden 2016, 204).

Because a parametric fit for NVI was not calibrated dur-
ing this study, NVI lunar reflectance values were linearly
scaled to SWIR brightness temperature (BT)s ranging
from 130K-400K, then histogram matched to the SWIR
imagery for the same analysis period (reference Figure
3). From the histogram matched NVI imagery, ARCHER-
2 calculated spiral, ring, and combined scores, as well as
many other statistics, using the SWIR parametric fit.

FIG. 3. Example of NVI (left) histogram matched to SWIR
(middle). The matched image (right) exhibits similar im-
age contrast as SWIR (reference image histograms in
second row), while highlighting low-level stratus and up-
per level cirrus similar to the NVI image.

3. ARCHER-2 STATISTICS

Statistics for the study consist of raw output from
ARCHER-2: Alpha, Rad50, Rad95, and Confidence
Score. Additionally, two derived statistics were computed:
Usage and Error. Alpha characterizes the distribution of
the expected error and determines the source sensor.
"Rad50" and "Rad95" are the 50% and 95% confidence
radii measured in degrees latitude/longitude surrounding
the center of the storm, respectively. Smaller "Rad50"
and "Rad95" values indicate increased confidence in the

FIG. 4. Combined score contours for low (left) and high
(right) confidence center fix analyses.
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Overall Results

Category NVI SWIR LWIR
Confidence Score 0.22 0.27 0.26

Alpha 1.68 2.05 1.25
Rad50 (o) 1.74 1.50 2.42
Rad95 (o) 4.92 4.23 6.83

N 932 932 932
Usage (%) 32.6 54.1 13.3
Error (km) 39.8 (21-77) 60.4 (32-139) 99.7 (48-209)

TABLE 2. ARCHER-2 results for the ten storms assessed in this study. The upper section of the chart shows the mean
values from ARCHER-2 raw output. The lower section shows the derived statistics: mean usage and median error with
interquartile range.

center fix. Alpha, Rad50, and Rad95 share a fixed corre-
spondence because they are derived from the same dis-
tribution curve; therefore, the higher the alpha score, the
smaller the confidence radii. Confidence score (η) as-
sesses the certainty of the ARCHER-2 center fix. The
tighter the combined score contours, the higher the confi-
dence score (reference Figure 4). Additionally, because
alpha is a function of the confidence score (see Equation
2), the higher the confidence score, the higher the alpha
is for a sensor.

For usage, ARCHER-2 selects the imagery type with
the highest alpha score in an analysis period as the
source sensor; therefore, the number of times an imagery
type carries the highest alpha score out of the total anal-
yses provides an overall usage percentage. The other
derived statistic, error, derived via Haversine formula, is
the measured distance between the ARCHER-2 center fix
and the interpolated Best Track. All statistics, except er-
ror, provide mean values assessed at each analysis time,
then averaged for the full data set in this study. Error
follows a similar structure, except median values are pro-
vided due to the bimodal distribution of error across trop-
ical depression (TD)- and TS-strength TCs.

4. RESULTS

The overall results for the objective study are provided
in Table 2. Because of NVI’s ability to assess cloud phase
and differentiate upper and lower level cloud features,
it exhibits lower median error than both SWIR (3.9µm)
and LWIR (11.2µm) by 20.6 and 59.9 kilometers, respec-
tively. SWIR demonstrates the optimal confidence score,
alpha, Rad50, Rad95, and usage. This apparent con-
tradiction between NVI’s error and SWIR’s confidence-
related statistics likely arises from the decreased gradient
stemming from NVI’s cirrus handling, which causes cir-
rus clouds to appear smooth and grey (reference Figure
1). Additionally, by histogram matching NVI to SWIR im-
agery, then using ARCHER-2’s SWIR parametric fit, the
overall results for NVI’s confidence score, alpha, Rad50,
Rad95, and usage will contain uncertainty for the true out-
put; that is, until a parametric fit for NVI is assessed.

To better measure uncertainty due to the parametric
fit, NVI lunar reflectance values for the storms analyzed
were also linearly scaled to brightness values (0-255),
then converted into the ARCHER-2 variable, “pseudo-
BT." This allowed ARCHER-2 to compute spiral, ring, and
combined scores for NVI using the DNB parametric fit.
Equation 3 shows the pseudo-BT formula that ARCHER-
2 uses to convert scaled brightness value into a pseudo-
BT:

PTB = 350− .75(BV ) (3)

where BV is the brightness value. The comparison of
ARCHER-2 raw output using NVI with DNB’s paramet-
ric fit and NVI with SWIR’s parametric fit is provided in
Table 3. For NVI, mean alpha, Rad50, Rad95, and us-
age increased when using the DNB parametric fit; this is
expected based on the sensor-specific slope and offset
values for DNB (reference Table 1). The 0.3 kilometer in-
crease in median error and 0.02 increase in confidence
score between "DNB-fit" and "SWIR-fit" are attributed to
scaling differences that arise when either converting NVI
lunar reflectance to pseudo-BT for "DNB-fit" or histogram
matching NVI to SWIR for "SWIR-fit". Ultimately, the re-
sults in Table 3 provide a range of likely values, specifi-
cally for NVI’s raw ARCHER-2 output (ie. alpha, Rad50,
and Rad95).

4.1. 2016 ARCHER-2 Study Comparison

Comparing the results of this study with the 2016
ARCHER-2 validation, NVI’s performance aligns clos-
est with visible imagery for TD- and TS-strength storms
(Wimmers and Velden 2016, 205). In Wimmers and
Velden’s 2016 study, visible, SWIR, and LWIR exhibited
center fix median errors of 36, 46, and 56 kilometers, re-
spectively (Wimmers and Velden 2016, 205). The 39.3
kilometer median error demonstrated by NVI highlights its
capability to generate pseudo-visible nighttime imagery
similar to standard visible (.64µm). Furthermore, any dis-
parity in median error for SWIR and LWIR between Wim-
mers and Velden’s study and this study likely stems from
the TCs analyzed. Wimmers and Velden (2016) com-
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Parametric Fit Uncertainty

***DNB-fit*** ***SWIR-fit***
NVI SWIR LWIR NVI SWIR LWIR

Confidence Score 0.24 0.27 0.26 0.22 0.27 0.26
Alpha 2.76 2.05 1.25 1.68 2.05 1.25

Rad50 (o) 1.39 1.50 2.42 1.74 1.50 2.42
Rad95 (o) 3.92 4.23 6.83 4.92 4.23 6.83

N 932 * * * * *
Usage 53.6 36.0 10.4 32.6 54.1 13.3

Median Error 40.1 60.4 99.7 39.8 60.4 99.7

TABLE 3. Raw and derived ARCHER-2 output using NVI with the DNB parametric fit versus the SWIR parametric fit.

bined TD and TS in a single category, so the sample size
for each respective storm strength is unknown (Wimmers
and Velden 2016, 205). From the error results though,
it can be inferred that more TD-strength storms were ex-
amined in this study since the median error for SWIR and
LWIR increased by 14.4 and 43.7 kilometers (Wimmers
and Velden 2016, 205). Median error results for both the
2016 and current study are provided in Table 4.

2016 Study Comparison

NVI SWIR LWIR
Imagery Type NVI Visible SWIR LWIR

2016 Study (km) * 36 46 56
Current Study (km) 39.8 * 60.4 99.7

TABLE 4. Error results (in km) for Wimmers and Velden’s
2016 study and the current study.

5. FUTURE WORK

The Joint Typhoon Warning Center (JTWC)’s research
priorities called for an objective analysis of TD- and TS-
strength storms in the Western Pacific (WPAC), specif-
ically those that proved the most challenging to center
fix. Future studies should extend this research to TCs
of all strengths across all basins. Additionally, ARCHER-
2 requires a parametric fit for NVI in order to use it op-
erationally. In Wimmers and Velden’s 2016 study, this
amounted to five years of TC data across all storm in-
tensities.
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