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1. INTRODUCTION 
 
Tropical Cyclones (TCs) are represented in our 
general circulation models (GCMs), however 
longstanding biases exist in their ability to simulate 
TC frequency and intensity (Camargo and Wing, 
2015). Process-oriented diagnostics (PODs) can be 
used to evaluate physical processes associated 
with meteorological phenomena in a model or suite 
of models in comparison to an observational 
reference, in order to identify targets for model 
improvement (Maloney et al., 2019; Neelin et al., 
2023). The column-integrated moist static energy 
(MSE) spatial variance budget was used as a POD 
in Wing et al. (2019) to evaluate the three diabatic 
feedbacks of the budget in the TC intensification 
process across a suite of high resolution GCMs. 
This framework was then utilized in Dirkes et al. 
(2023) to evaluate 5 different reanalysis datasets in 
the same fashion. 
 
The work in this study builds upon prior work using 
the MSE variance budget by comparing the GCMs 
in Wing et al. (2019), as well as many more high 
resolution GCMs, against each other and to the 
reanalyses in Dirkes et al. (2023). The 
representation of these feedbacks across the GCMs 
will also be compared against each other by 
grouping them by similar horizontal grid spacing, 
whether they are fully coupled versus uncoupled 
with the ocean, and investigating the effect of 
clouds. To more effectively compare the GCMs to a 
more “pure” observational reference rather than 
reanalyses, CloudSat satellite observations from 
Lee and Wing (2024) are utilized for the radiative 
feedbacks in the investigation of the role of clouds. 
This study also investigates the differences in 
feedback representation in ERA-5 precursor tropical 
disturbances that do or do not develop into TCs. 
 
2. DATA AND METHODS 
 
Five reanalyses are used in this study from Dirkes 
et al. (2023) as well as the six high resolution GCMs 
in Wing et al. (2019). There are also thirteen more 
high resolution GCMs that were analyzed. Of the 
nineteen GCMs that were used in this study, there 
were a vast range of horizontal grid spacings 
among them where some had ¼ of a degree grid 
spacing to as coarse as nearly 1.5-degree grid 
spacing. 
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Three of these models also had both a simulation 
that was fully coupled to the ocean and a simulation 
that was uncoupled and had prescribed sea surface 
temperatures (SSTs). All of the GCMs and 
reanalyses also had varying cloud, radiative, and 
convective schemes as well as different dynamical 
cores. The CloudSat satellite observations were 
radial profiles of the intensity bin composite 
feedbacks provided by Lee and Wing (2024). 
However, to more fairly compare the reanalyses 
and GCMs to these observations, the radial profiles 
were coarsened to 24 km. 
 
Following Wing et al. (2019) and Dirkes et al. 
(2023), the MSE variance budget feedbacks are 
calculated in a 10-degree by 10-degree box domain 
centered on the TC at each time up until lifetime 
maximum intensity (LMI) for the GCMs and 
reanalyses. The azimuthal mean of each of these 
box snapshot feedbacks and the box-averaged 
feedback is calculated. Each of these snapshots are 
then binned and composited by the snapshot’s 
maximum velocity (Vmax) as well as minimum mean 
sea level pressure (minimum MSLP). The MSE 
variance budget and the feedbacks investigated in 
this study are provided in Figure 1. Considering 
Dirkes et al. (2023) noted one specific reanalysis 
dataset could not be deemed “better” than the 
others, we treat the reanalyses as a range of 
“observational” truth.  
 
 

 
Figure 1: The MSE spatial variance budget and 
the diabatic feedbacks analyzed on the right 
hand side (boxed). The h’SEF’ feedback is the 
surface enthalpy flux (SEF) feedback, h’LW’ is 
the longwave (LW) feedback, and h’SW’ the 
shortwave (SW) feedback. 
 
3. ROLE OF RESOLUTION 
 
The GCMs were separated into different groupings 
based on their horizontal grid spacing to investigate 
their representation of the feedbacks compared to 
GCMs of similar and differing grid spacing. When 
observing the box-averaged feedbacks in Figure 2, 
we can note the differences in feedback 
representation of these GCMs with intensity. First 
comparing the top two rows, the ordering and 
magnitudes of the variance as well as the 
feedbacks is minimally different when binning by 
Vmax versus minimum MSLP, therefore we stick with 
Vmax to be consistent with prior work. The more 
finely gridded GCMs in the middle row tend to follow 
the reanalysis mean closely across the feedbacks 



and variance. The more coarsely gridded GCMs in 
the bottom two rows tend to be more variable and 
closer to the extremities of the reanalysis range. 
The SEF and SW feedbacks tend to be higher in 
the more finely gridded GCMs than the more 
coarsely gridded ones. The LW feedback is positive 
across all the GCMs and reanalyses but varies in 
magnitude. 
 

 
Figure 2: Box-averaged MSE variance and its 
feedbacks (columns) as a function of intensity 
(min. MSLP top, Vmax bottom 4 rows), split by 
horizontal resolution (last 3 rows). 
 
4. ROLE OF COUPLING 
 
For the three models with fully coupled and 
uncoupled simulations, the azimuthal mean SEF 
feedback was higher in the uncoupled simulation 
than the coupled simulation across all intensity bins 
(top row of Figure 3). To understand why this 
difference was present, the SEF feedback was 
decomposed. 
 

 
Figure 3: Azimuthally averaged SEF feedback 
and its components (rows) by intensity 
(columns) in coupled and uncoupled model 
simulations. 
First observing the latent and sensible heat flux 
anomalies (second and third row of Figure 3, 
respectively), where these anomalies peaked 
radially, they were higher in the uncoupled 
simulations as well. Assuming the SEFs were 
calculated using a bulk equation, the wind speed 

and air-sea enthalpy disequilibrium anomalies are 
of importance as well. Ultimately, the wind speed 
anomalies did not exhibit meaningful differences 
between the simulations (fourth row of Figure 3). 
However, the anomaly of the thermal component of 
air-sea enthalpy disequilibrium does indicate the 
uncoupled simulations have higher anomalies in the 
TC-core region (innermost 2.5 degrees). Minimal 
differences exist between the coupled and 
uncoupled representation of the anomalies of the 
moisture component of air-sea enthalpy 
disequilibrium.  
 
5. ROLE OF CLOUDS 
 
The feedbacks presented in this section are 
calculated a bit differently compared to the way they 
are described in the methodology to match that of 
CloudSat. Instead of the feedbacks being calculated 
at each snapshot, they are now calculated from the 
intensity bin composite MSE and flux. The SW 
feedback also now does not include the zero values 
of SW flux convergence at night to match that of 
what is used in the CloudSat calculations. 
 

 
Figure 4: As in Fig. 3, but with just the total and 
clear-sky radiative feedbacks for GCMs with the 
necessary output, reanalyses, and CloudSat. 
 
The azimuthal mean radiative feedbacks (total and 
clear-sky) are depicted in Figure 4. At weaker 
intensities, the GCMs and reanalyses tend to have 
a higher total LW feedback in the TC-core region 
compared to CloudSat, but at stronger intensities 
the GCMs and reanalyses fall more closely to 
observations. The clear-sky LW feedback tends to 
be near zero at all intensities across the GCMs, 
reanalyses, and CloudSat. The total SW feedback 
in the GCMs is near zero at weaker intensities, but 
diverges at higher intensities where some have a 
positive or negative feedback. The CloudSat total 
SW feedback is also near zero at weaker 
intensities, but becomes more negative in the TC-
core at higher intensities. The clear-sky SW 
feedback is slightly positive in the TC-core region at 
all intensities across the GCMs, reanalyses, and 
CloudSat.  
 
6. TROPICAL DISTURBANCES 



 
Precursor tropical disturbances that may or may not 
end up developing into TCs were investigated in 
ERA-5 over the years of 2000-2004 using the same 
MSE variance budget used on the TCs. These 
disturbances were given a tag variable that 
indicated if they reached TC status. The 
disturbances that did develop and their 
corresponding snapshots were binned and 
composited together by intensity and compared to 
the binned and composited snapshots of 
disturbances that did not develop. 
 

 
Figure 5: Spatial view of MSE variance budget 
feedbacks (rows) for developing and non-
developing disturbances (columns) in ERA-5 
binned by min. MSLP. 
 
The developing disturbance intensity bin composite 
SEF feedback shows a more closed ring of positive 
feedback. While the LW feedback is positive in both 
cases, the developing disturbances have a much 
more circular pattern in the TC-core region and is 
more strongly positive than the non-developers. The 
SW feedback is just slightly more positive in the 
non-developers than that of the developers. This 
would be anticipated however as ERA-5 was the 
only reanalysis of the five investigated to have a 
negative SW feedback for the TC intensity bin 
composites. Therefore, as the developers reach 
stronger intensities the SW feedback decreases. 
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