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1 INTRODUCTION

Transverse cirrus bands (TCBs) are a phenomenon
that occurs in many mesoscale and synoptic weather sys-
tems, including tropical cyclones. TCBs are defined as
"Bands of clouds oriented perpendicular to the flow in
which they are embedded" (NOAA) and can be associ-
ated with low static stability and high environmental ver-
tical wind shear in the upper-levels (Kawashima 2021).
TCBs in tropical cyclones are of particular interest due
to their apparent occurrence and potential linkage to the
tropical cyclone diurnal cycle, stronger tropical cyclones,
and rapid intensification, where rapid intensification is an
intensification rate of 30 knots or more in 24 hours (NHC).
To fully understand TCBs and how they relate to tropical
cyclones, they must be efficiently identified, which can
be achieved through a machine-learning model. Miller
et al. (2018) developed such a model, which identified
whether TCBs were present anywhere within a satellite
image. However, this model does not provide information
on the spatial structure of the bands and their location rel-
ative to a feature of interest, such as a tropical cyclone.
This task is particularly suited for a U-Net Convolutional
Neural Network (CNN) model because a U-net contains
an upsampling portion that a CNN does not do. While a
CNN can be used to identify whether TCBs are in an im-
age, a U-Net allows for the specific location of a TCB and
the number of pixels a TCB makes up to be identified.

U-Nets are a type of model that can be used to iden-
tify features present in a dataset by comparing manually
identified features to features that are predicted using a
training dataset, which is composed of arrays. U-Nets re-
quire an array to be reduced in size, which means the
image becomes blurred and then increased in size back
to the array’s original size, which means an array must
have a row and column length divisible by two for each
layer used in the model. U-Nets also utilize a variety of
methods to improve learning, such as dropping out cer-
tain memory nodes to force the model to utilize different
methods of identification and normalizing the outputted
data to create a normal distribution (O’Shea and Nash
2015). The condensed architecture of the U-Net model
used in this study can be seen in Figure 1.

2 MODEL TRAINING AND METHODOLOGY

2.1 MODEL CREATION AND TRAINING

The first step of the U-Net model creation was the selec-
tion of which GOES-16 Advanced Baseline Imagery (ABI)
channel or channels would be used to train the model
and identify TCBs. After initial model testing, channels 13
(clean-IR) and 8 (upper-level water vapor) were chosen
as they resulted in a model that produced accurate TCB
areas with high confidence. These channels were chosen
over visible and near-infrared channels, such as channel
4 (Cirrus Band), due to their ability to identify TCBs both at
night and during the day. TCBs were manually identified,
and the coordinates were saved to train the model. A total
of 184 training cases were used, along with 58 verification
cases that all came from a variety of times ranging from
2018 to 2023 and included tropical cyclone TCBs, TCBs
from other sources, and images with no TCBs. After the
manually identified data was collected, the GOES-16 ABI
files were downloaded from the National Oceanic and At-
mospheric Administration’s Amazon Web Services repos-
itory and converted to arrays along with the coordinate
files, where the coordinate files became arrays of ones
and zeroes to indicate the presence or absence of TCBs
at a given pixel. The data for channels 13 and 8 were
also scaled using Scikit-Learn’s Standard Scaler to help
the model identify the global minimum in brightness tem-
peratures more easily. Missing data, which wasn’t a large
factor in the training cases used but could be a factor in
images near the GOES-16 Limb, was assigned a large
value much higher than the other values so the model
would learn to ignore it. The U-Net was then trained over
100 epochs, with the overall best epoch, determined qual-
itatively by seeing which epoch provided a balance of
TCB location confidence and accuracy, being selected.
Usually, a model would be trained until the metrics have
stabilized and stopped improving. However, a constant
number of 100 epochs was used to see how the model
would develop if overtrained.

2.2 CREATION OF TRANSVERSE CIRRUS
BAND STATISTICS

After the creation of the model, error statistics were per-
formed to determine an ideal probability threshold that
would minimize false positives while still identifying TCBs.
The reason a probability threshold is needed is that the
model outputs a percentage for each pixel, showing how
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confident the model is that the pixel is part of a TCB. The
Jaccard Score, which is the intersection over the union
of the true and predicted arrays, was determined to be
the best choice since it maximizes intersection while min-
imizing the union of the true and predicted data, where
the truth arrays were determined by manual identifica-
tion of TCBs in 43 tropical cyclone cases. The Jaccard
Score provided a probability threshold of 48.09 percent.
An example of the model identifying TCBs using the Jac-
card Score probability threshold can be seen in Figure
2, which clearly demonstrates the ability of the model
to not only identify TCBs but also to identify them with
high confidence. Figure 2 is only one example of the
model, which performs similarly in other tropical cyclone
and non-tropical cyclone imagery.

Two datasets were then used to relate the presence
of TCBs to tropical cyclone structure and intensity. The
HURDAT2 dataset (Landsea and Franklin 2013) was
used to identify the tropical cyclone best track. Environ-
mental vertical wind shear over the 850-200 mb layer was
obtained from the Statistical Hurricane Intensity Predic-
tion Scheme (SHIPS) dataset’s SHDC and SDDC vari-
ables (DeMaria and Kaplan 1994). Once the data for
all North Atlantic tropical cyclone advisories from 2018 to
2022 was downloaded, converted to arrays, and scaled,
the model was run on the data. Using the TCB probabil-
ities, statistics were generated, including a polar density
map of TCB locations for the environmental shear vector
and radius, along with bar charts of the number of TCB
pixels per time of day, rapid intensification status, and
tropical cyclone intensities. The tropical cyclone inten-
sity bar is based on the Saffir–Simpson scale with trop-
ical storms and depressions, category one and two hur-
ricanes, and category three through five hurricanes were
grouped together. The bar charts were created by first
sorting images and their associated amount of TCB pix-
els into bins. This was done multiple times to sort based
on the time of day, intensity, and whether rapid intensifi-
cation was occurring. Data for the bar charts were sorted
into bins of TCB pixels based on the time of day, intensity,
and whether rapid intensification was occurring. The total
number of TCB pixels in each bin was then divided by the
total number of all pixels (TCB plus non-TCB) in each bin
to get a percentage.

3 RESULTS

3.1 TRANSVERSE CIRRUS BANDS RELATION
TO SHEAR RELATIVE VECTORS AND RA-
DIUS

After calculating the necessary TCB statistics, a polar
density map of the number of TCB pixels per 50-kilometer
radius and 0.5 degrees was created (Figure 3). From the

figure, it is evident that TCBs occur most frequently in the
downshear quadrants of tropical cyclones between 200
and 400 kilometers and less frequently close to a tropical
cyclone’s center, in the upshear quadrants, and at greater
distances away from the tropical cyclone center.

3.2 TRANSVERSE CIRRUS BANDS RELATION
TO TROPICAL CYCLONE STRENGTH AND
THE DIURNAL CYCLE

Figure 4 shows the percentage of TCB pixels per image
for different tropical cyclone strength intensities that are
based on the Saffir–Simpson scale. Overall, category
three and higher hurricanes, which have winds greater
than 95 knots, had greater than 20% of image pixels be
TCBs, while category one and two hurricanes, which have
winds of 64 to 95 knots, had a value of 20%, and tropi-
cal storms and depressions combined, which have winds
less than 64 knots, had a value of 15%. Figure 5 shows
the percentage of TCB pixels per image for a tropical cy-
clone’s rapid intensification status. Overall, TCBs were
more common in tropical cyclones undergoing rapid in-
tensification than in storms not undergoing rapid intensifi-
cation. Figure 6 compares the probability of TCBs in trop-
ical cyclones at four different times of day using the per-
centage of TCB pixels per image. Times in the evening, or
around 1800 local time, had a percentage of 18%, while
0000, 0600, and 1200 had percentages close to 17%,
15%, and 17%, respectively.

3.3 CONCLUSION

A U-Net CNN was trained to successfully identify TCBs in
GOES-16 ABI imagery and was used to relate the pres-
ence of TCBs to tropical cyclone structure and intensity.
TCBs occur more frequently in the downshear quadrants
of a tropical cyclone, in tropical cyclones with greater in-
tensity, in tropical cyclones undergoing rapid intensifica-
tion, and in the evening hours. In the future, the model will
be run every hour rather than every six hours to increase
the size of the dataset and provide a more complete pic-
ture of the diurnal cycle. More analysis will also be done
into the relationship between TCBs and tropical cycle in-
tensity change, along with statistical significance testing
to confirm the statistical significance of the results.
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5 Figures

Figure 1: The U-Net CNN used in this study. The model has three layers and utilizes two inputs. The model also utilizes
the dropout, max pooling, and batch normalization methods to improve model learning and confidence. The
basic flow of the model is as follows. The ABI channel 13 and channel 8 arrays are inputted at the top of the
diagram. The two arrays are then concatenated together to make one array. After that, the array is halved
in size for each convolution, with an activation, batch normalization, max pooling, and dropout function being
used each time except for the first convolution, which does not have a dropout or max pooling function. After
the array is reduced to a 64 by 64 array from its initial size of 512 by 512, the U-net portion of the CNN begins.
The same general process is applied except that the convolution function is replaced with a 2D convolution
function. The array is then increased in size back to its original 512 by 512 dimensions.



Figure 2: An example of the model using the Jaccard Score probability threshold. The left panel shows GOES-16 ABI
Channel 13 brightness temperatures (degrees Celsius) in tropical cyclone Iota, and the right panel is the same
image with the probabilities of transverse bands at each pixel depicted in colored contours.



Figure 3: Storm-centered plot of the number of GOES-16 ABI pixels that contain TCBs at a given radius and shear
relative azimuth. Zero degrees is downshear, 180 degrees is upshear, 90 degrees is right of shear, and 270
degrees is left of shear. Range rings are plotted every 200 km out to 1000 km.



Figure 4: The percentage of pixels in an image that are TCBs for three different intensity bins. The y-axis shows
the percentage of TCB pixels while the x-axis shows the tropical cyclone intensity, which is either a tropical
depression or storm, category 1 and 2 hurricane, or category 3 through five hurricane.



Figure 5: The percentages of pixels in an image that are TCBs for tropical cyclones undergoing rapid intensification
and for tropical cyclones not undergoing rapid intensification. The y-axis shows the percentage of TCB pixels,
while the x-axis shows rapid intensification and non-rapid intensification.



Figure 6: The percentages of pixels in an image that are TCBs for four different times of day, which are 0000, 0600,
1200, and 1800 local time.


