
15C.2  AUGMENTING THE TROPICAL CYCLONE LOGISTICAL GUIDANCE FOR GENESIS 
(TCLOGG) BY INTRODUCING A MOST LIKELY TIME OF GENESIS 

 
Ryan M. Remondelli1 *, Daniel J. Halperin2, Robert E. Hart1 

1Florida State University, Tallahassee, FL 
2Embry-Riddle Aeronautical University, Daytona Beach, FL 

 
1. INTRODUCTION 
 
Recent decades have seen significant 
advancements in operational Numerical 
Weather Prediction (NWP). While NWP models 
in the late 1990s and early 2000s have had 
limited ability to offer beneficial TC genesis 
guidance to forecasters (Beven 1999; 
Schumacher et al. 2009), improvements in NWP 
have led to new genesis tools and guidance. 
These products include the direct use of NWP 

output, via post-processed forecast guidance, 
greatly improving genesis prediction capabilities.  
Innovations such as the Genesis Potential 
Parameter (GPP; Kotal and Bhattacharya 2022), 
the Tropical Cyclone Genesis Index (TCGI; 
Brammer et al. 2022; 2023), and the Tropical 
Cyclone Logistic Guidance for Genesis 
(TCLOGG) have leveraged environmental 
indicators and NWP outputs for more accurate 
forecasts. Additionally, the integration of 
advanced machine learning techniques has 
further enhanced forecast accuracy and 
operational application potential. 
 

TCLOGG (Halperin et al. 2017; 2020) has 
undergone significant development over the last 
decade, employing logistic regression to offer 
genesis probabilities across all global basins. 
However, TCLOGG and similar tools fall short in 
providing guidance for when TC genesis is likely 
to occur within the typical 3-day, 5-day, and 7-
day TC genesis forecast periods. This lack of 
information is problematic for forecasters, as TC 
genesis, intensification, and landfall can all 
occur within a single Tropical Weather Outlook 

(TWO) period (e.g., 3 days). Developing a Most 
Likely Time of Genesis (MLTG) product for 
TCLOGG will help in filling a critical gap in 
information for forecasters.  
 
2. GENESIS TIMING BIAS CONFIRMATION 

AND DATASET DEVELOPMENT  
This study aims to refine TCLOGG by 
incorporating a MLTG component to improve 
upon the biases in genesis timing predictions. 
An in-depth exploratory analysis of TCLOGG 
outputs from 2015 to 2021 identified biases in 
forecasted genesis times across various NWP 

Table 1: The North Atlantic and East Pacific model specified MAE, mean error, and mean error 95% CIs 
for the 2015-2021 period. The 95% CIs are shaded by confidence, with intervals less than 5 hours in 
green, between 6 and 10 hours in yellow, and above 10 hours in red.  
 

Operational Global NWP Mean Absolute and Mean Genesis Timing Errors (hours) 
2015-2021

95% CIMeanMAENorth Atlantic
-8.48 ‣ 14.22 11.3626.87GFS
7.05 ‣ 11.749.4029.29ECM
9.41 ‣ 16.4712.9431.87CMC
2.33 ‣ 8.50 7.8130.35NAV

-4.91 ‣ -0.51-2.7128.16UKM

95% CIMeanMAEEast Pacific
2.28 ‣ 6.28 4.2822.23GFS

19.21 ‣ 23.7121.4628.25ECM
2.33 ‣ 8.505.4126.39CMC

11.87 ‣ 16.1113.9923.07NAV
3.73 ‣ 8.04 5.8922.20UKM
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models, including GFS, ECMWF, CMC, UKMET, 
and NAVGEM. 
 
To accurately assess genesis timing and 
location errors, the study used the International 
Best Track Archive for Climate Stewardship 
(IBTrACS) for case verification. Non-hit cases 
were excluded from the dataset as a genesis 
verification time is required. Preliminary findings 

showed significant variability in timing errors 
across models and years, with some models 
displaying Mean Absolute Errors (MAE) 
exceeding 24 hours. Given the context of three 
or seven-day TWO forecasts, these MAEs are 
subjectively considered high. However, Table 1 
also reveals 95% confidence intervals (CI) 
centered around zero. 
 
These confidence intervals are narrow, 
indicating that the mean errors are closely 
clustered around zero. Considering the 
uncertainty in genesis time within NWP grids 
can be up to five hours, the CIs may suggest 
that in basins with good agreement, producing a 
single MLTG value could be challenging. 
 
Using these identified cases from TCLOGG, a 
developmental dataset for the MLTG project was 
generated by retrieving known predictors crucial 
for TC genesis from each NWP model for all 
global basins. The MLTG developmental dataset 
variables were generated based on a storm-
centered 5°x5° grid. Table 2 details the variables 
extracted from NWP model fields considered for 
potential inclusion in the MLTG developmental 
dataset, as identified in Halperin et al. (2017).  

3. RANDOM FOREST REGRESSOR MODEL 
DEVELOPMENT 

 
The majority of the MLTG-based guidance 
utilized the Random Forest Regressor (RFR; 
Brieman 2001), a sophisticated ensemble-based 
machine learning algorithm known for handling 
non-linear relationships, as the estimator of 
choice. 

 
The RFR models utilized cases from 2015-2020 
(80% of the developmental dataset) for model 
training. First, forward predictor selection with 
cross-validation, using relevant predictors (Table 
2), was completed. This step ensured that only 
the most important, non-redundant predictors 
were included, minimizing the risk of overfitting 
and maximizing skill. 
 
Hyperparameter tuning occurred thereafter. This 
involved the optimization of several parameters 
important to the performance of the RFR. These 
include the number of trees in the forest 
(n_estimators) and the maximum depth of the 
trees (max_depth). This optimization process 
sought to find a balance between model 
complexity and prediction accuracy, ensuring 
the model was sufficiently detailed to capture the 
underlying data patterns without becoming 
overly complex. 
 
Once the best features and parameters were 
found, the RFR model was fitted on the training 
dataset. The remaining 20% served as a 
validation dataset used to assess the model's 
accuracy in predicting the actual forecast hour of 
genesis. 

 

MLTG Developmental Dataset Variables Calculated from Storm Centered 5°x5° Grid 
Forecast Hour Mean Sea Level Pressure 
Latitude Longitude 
925 hPa Wind Speed Maximum 200 hPa - 850 hPa Average Vertical Wind Shear 

250 hPa-850 hPa Thickness Maximum 
250 hPa-850 hPa Thickness Perturbation from 
Average 

850 hPa Relative Vorticity Maximum 
850 hPa Relative Vorticity Perturbation from 
Average 

700 hPa Average RH 700 hPa RH Perturbation from Average 
850 hPa Average Divergence    

Table 2: The variables used from NWP model fields for potential inclusion in the MLTG developmental 
dataset. These variables were shown to be relevant predictors for TC genesis in H17. 
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The results from the RFR-based MLTG 
methodology exhibited reduced MAE and root 
mean squared errors (RMSE) across various 
models and basins on the validation dataset. 
This result was shown particularly within the 
JTWC's area of responsibility. This improvement 
demonstrates the value of the models and 
allowed for the experimental implementation for 
the 2023 season. 
 
4. CONSENSUS XGBOOST REGRESSOR 

DEVELOPMENT 
 

Consistent with the original TCLOGG 
methodology, a consensus MLTG (CMLTG) 
needed to be created for all basins. However, a 
more advanced machine learning algorithm 
needed to be used. This is because for some 
cases, predictors are not available, and must be 
filled with NaN values.  
 
As a result, the XGBoost Regressor is used.  
XGBoost, or Extreme Gradient Boosting, is a 
machine learning algorithm operating on the 
principles of ensemble based learning and 
gradient boosting (Chen and Guestrin 2016). 
XGBoost sequentially builds an ensemble of 
shallow decision trees to iteratively correct 
errors and improve overall predictive 
performance. XGBoost also effectively prevents 
overfitting by incorporating L1 and L2 
regularization.  
 
Further, XGBoost optimizes the interchange 
between a loss function and regularization to 
fine-tune model parameters through gradient 
descent (Chen and Guestrin 2016). A key 
benefit for developing the consensus MLTG, 
XGBoost Regressor incorporates a mechanism 
for handling missing data. During the training 
process, XGBoost can internally handle missing 
values in the input features. Rather than 
requiring explicit imputation, XGBoost 
intelligently learns the optimal input strategy for 
missing data as part of its optimization process. 
It achieves this by considering the missing 
values separately and creating a split in the 
decision trees that directs instances with missing 
values to one of the branches. This not only 
simplifies the preprocessing steps for users, but 
also contributes to the algorithm's overall 
resilience and effectiveness in scenarios where 

data incompleteness is prevalent (Chen and 
Guestrin 2016). 
 
Utilizing a compiled dataset of timing forecasts 
for the 2016-2020 period (AL, EP), and 2015-
2019 period (JTWC), a XGBoost Regressor 
model was trained utilizing the raw TCLOGG 
and RFR MLTG timing forecasts as input 
predictors. 
 
An exhaustive grid search to hyperparameter 
tune the XGBoost model was applied on the 
developmental dataset. Subsequently, the 
model was trained on a distinct 80% partition of 
the developmental dataset, split by year, to 
prevent data leakage into the validation portion 
of the dataset.  
 
The resulting CMLTG predictive skill, when 
tested on the validation dataset, is on par with 
the remainder of the RFR MLTG models. 
Accordingly, the updated CMLTG was 
experimentally implemented alongside the other 
MLTG guidance for the 2023 season to test 
overall skill. 
 
5. 2023 OPERATIONAL RESULTS 
 
With the verification of the experimental MLTG 
guidance for the 2023 season, it is important to 
note that this verification is based on a single 
season and utilizes a completely independent 
dataset from that used in the development of the 
RFR and XGB models. This is crucial, as some 
basins, notably the Indian Ocean (IO), have very 
low case counts, making them potentially 
unrepresentative of overall MLTG performance.  
 
For the Atlantic (AL; Figure 1) Basin, the results 
indicate a minor level of improvement in models 
such as NAV, CMC, and GFS, suggesting some 
effectiveness of the MLTG in this region. 
Comparatively, minimal degradations are 
observed in the UKM, ECM, CON-XGB and 
CON-Mean models. However, overall 
improvements or degradations within the basin 
are slight. 
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In the Eastern Pacific (EP; Figure 1) Basin, 
timing improvements are notable in the NAV, 
ECM, GFS, and UKM models, but a degradation 
in CMC points to the MLTG's model-specific 
effectiveness within this basin. Interestingly, this 
basin is the only instance where the CON-XGB 
underperforms the CON-MEAN. 
 
The Western Pacific (WP; Figure 1) Basin 
presents another mixed scenario, where 

significant improvements are seen in the UKM 
and the ECM models, but a considerable drop in 
performance is noted for the NAV. Compared to 
the CON-MEAN, CON-XGB, and GFS models, 
the differences between MLTG and raw timing 
are minimal, suggesting a nuanced impact of 
MLTG guidance across models. 
 
In the Indian Ocean (IO; Figure 1) Basin, nearly 
all models show forecast degradation, except for 
ECM, which is an outlier. The CON models 
display small degradations, while the UKM, 
CMC, and NAV models are significantly 
degraded. This outcome is particularly 
concerning given the model's positive 
performance in the validation dataset, hinting at 
possible overfitting issues or the environmental 
conditions during the season significantly 

diverged from those in the developmental 
dataset. The smaller training dataset for the IO 
Basin compared to the WP and Southern 
Hemisphere (SH) basins may also affect the 
overall skill of the models. However, given the 
low case count for 2023 in the IO Basin, further 
validation in 2024 is necessary before 
considering adjustments to the model. 
 
For the Southern Hemisphere (SH; Figure 1) 

Basin, the general trend leans towards MLTG 
improvements across all models, except for the 
NAV, which shows timing degradation. This 
basin stands out as the most successful in terms 
of overall MLTG improvement over the raw 
TCLOGG tracker, highlighting the potential 
benefits and challenges of implementing MLTG 
guidance across different basins. 
 
 
6. SUMMARY 

 
The development of the MLTG guidance was 
pursued to provide more robust and precise 
timing guidance for forecasters. This project 
aimed to improve TCLOGG, a widely used tool 
for effective TC genesis forecasting. 
 

Figure 1: 2023 RFR and raw TCLOGG timing MAE for all deterministic guidance, a simple MLTG 
averaged consensus guidance (CON-Mean), and XGBoost Regressor consensus guidance (CON-XGB). 
The raw TCLOGG timing MAE is shown in yellow, while the RFR and XGB-based guidance MAE is blue. 
Degradations or improvements of the MAE of the machine learning guidance is shown in hatched green 
(improvements) or red (degradations).  
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Overall, the improvements offered by the MLTG 
guidance have been mixed. The majority of 
timing enhancements were observed within the 
JTWC Area of Responsibility, where initial timing 
errors tended to be larger compared to those in 
the NHC. This discrepancy may stem from the 
different methodologies employed by the NHC 
and JTWC in determining genesis, with the 
NHC's approach being closer to the model 
guidance used in developing the MLTG. 
 
Nonetheless, the results prompt critical 
examination of whether generating a single 
genesis time yields the most robust guidance. 
This question is particularly notable given the 
initial CIs which are predominantly centered 
around zero. The relatively small CI sizes call 
into question the usefulness of relying on a 
singular value method. This skepticism is further 
supported by the inherent uncertainty in precise 
genesis timing within NWP models, resulting 
from the 6-hour temporal resolution of the grids. 
Such rounding could lead to genesis forecasts 
being off by approximately 5 hours, potentially 
explaining much of the observed CI, especially 
within the NHC AOR. 
 
Therefore, it appears that resolving genesis 
timing with a single forecast hour (FHR) might 
not adequately capture the inherent 
uncertainties. An interval-based approach to 
predicting genesis timing could offer a more 
accurate and skillful tool for forecasters by better 
representing forecast uncertainty. The next 
generation of timing guidance should strongly 
consider adopting such an interval-based 
method to enhance the reliability and utility of 
tropical cyclone genesis timing predictions. 
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