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1. INTRODUCTION 

Tropical cyclones (TCs) pose significant threats to low- 
and mid-latitude coastal areas, making their accurate 
simulation in general circulation models (GCMs) crucial. 
However, despite advancements in model resolution, TC 
simulation remains challenging, with considerable 
variability in frequency across different GCMs (Roberts et 
al., 2020). Knutson et al. (2020) reviewed literature on 
future TC activity projections and found high or medium-
to-high confidence in increased TC precipitation rates 
under 2 °C global warming. Regarding TC frequency, 
while many GCMs project a decrease with warming (e.g., 
Held and Zhao, 2011), observational evidence for this 
trend is inconclusive. Model biases and limitations in 
capturing interactions between TCs and the large-scale 
environment may contribute to these discrepancies. 
Emanuel (2021) utilized downscaling techniques to 
predict a rising trend in TC frequency with climate 
warming, raising concerns about GCMs' ability to 
accurately simulate TC behavior. Therefore, 
understanding the processes influencing TC frequency in 
GCMs is critical for improving confidence in future climate 
projections. 

The limitations of horizontal resolution in GCMs 
contribute to uncertainties in simulating TC frequency. 
Villafuerte et al. (2021) demonstrated that variations in 
convective parameterizations can lead to significant 
differences in TC numbers, ranging from 1.2 to 22.5 TCs 
per year. Moreover, altering the physics timestep can 
influence TC frequency by affecting convective available 
potential energy (CAPE) removal and grid-scale vertical 
mass flux (Zarzycki, 2022). Zhao et al. (2012) found that 
TC frequency is sensitive to model parameters like 
cumulus lateral mixing rate and divergence damping. 
These studies highlight the substantial impact of 
conventional parameterizations on TC frequency. 
However, assessing parameter tuning's correctness 
poses challenges. Parameter tuning that overlooks sub-
grid processes may result in overfitting to present climate 
conditions and inaccurate future climate projections. To 
address this issue, we adopt a convective-permitting 
approach within a GCM in the Multiscale Modeling 
Framework (MMF). 

The MMF or Superparameterization (SP) replaces the 
conventional cumulus parameterization in each grid 
column with a nested integration of two-dimensional 
cloud-resolving models (CRMs) to explicitly simulate 
convection at the grid scale. The Superparameterized 
Community Atmosphere Model (SPCAM) is a GCM with 
SP developed by Khairoutdinov and Randall (2001) 
based on the Community Atmosphere Model (CAM) from 
the National Center of Atmospheric Research (NCAR). 
Previous studies have demonstrated enhancements in 
simulating various phenomena such as diurnal variation 
of rainfall (Khairoutdinov et al., 2005; Zhang et al., 2008; 
Pritchard and Somerville, 2009), the Madden-Julian 
Oscillation (Benedict and Randall, 2009), low-level 
moistening before major precipitation events (DeMott et 
al., 2007), and the mean state of the Asian summer 
monsoon (DeMott et al., 2011). Additionally, the South 
China Sea summer monsoon, a sub-system of the Asian 
summer monsoon, has been investigated using this 
model (Kuo, Chen, and Wu, 2020). With these 
advancements, SPCAM is well-suited for studying 
multiscale weather systems where convection plays a 
pivotal role. However, it is acknowledged that SPCAM 
tends to produce precipitation hotspots over the Asian 
summer monsoon region and the western North Pacific 
in climate simulations (Khairoutdinov et al., 2005; Randall 
et al., 2016). This bias may be partially attributed to 
tropical cyclones. Therefore, in this study, we aim to 
utilize SPCAM to explore model sensitivities in simulating 
tropical cyclone activities over the western North Pacific. 

GCMs with SP offer the advantage of explicitly 
calculating cloud-scale statistics from CRMs without 
relying on physical or empirical assumptions for 
diagnosing the grid-scale environment. Different CRM 
configurations may yield specific cloud distributions or 
convective characteristics. In an early sensitivity test, 
Khairoutdinov and Randall (2001) examined four 
configurations with an 18-day simulation in a CRM, 
integrated into SPCAM. They found that changes in 
geometry (2D or 3D), domain size, and resolution did not 
exhibit clear biases, and all experiments performed 
consistently. However, this study only evaluated CRM 
performance with prescribed large-scale forcing, omitting 
interaction between the large-scale and sub-grid 
parameterization. More recently, Cheng and Xu (2014) 
focused on the orientation of 2D CRMs based on three 
types of environments for mesoscale convective systems 
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(MCSs). Their results showed improvements in reducing 
biases in precipitation and circulation. Pritchard et al. 
(2014) examined the effects of horizontal scales on the 
Madden-Julian Oscillation (MJO), conducting 
experiments with CRM domain sizes of 32, 64, and 128 
km. They concluded that CRM horizontal scales are not 
critical to MJO dynamics in SPCAM, but shortwave cloud 
forcing is enhanced for smaller CRM domain sizes in the 
tropics. Tao and Chern (2017) focused on CRM 
resolutions and grid points for simulating MCSs, finding 
that only higher resolutions (1 km or 2 km) and more grid 
points (128 and 256) could produce realistic MCSs. This 
improvement also affected the Hadley circulations and 
precipitation patterns. 

These studies highlight differences among 
configurations, which can influence various weather 
systems differently. Configurations can be considered as 
different types of convective properties. Additionally, 
SPCAM has been employed in recent studies to develop 
machine learning-based convective parameterization 
(Gentine et al. 2018; Rasp et al. 2018; Mooers et al. 
2021), as simulations provide realistic convective 
variability within the CRM under various large-scale 
environments. However, these studies used simulations 
with specific CRM configurations. It is worthwhile to 
explore how different types of sub-grid convection can 
yield different relationships with the large-scale 
environment, particularly in more extreme cases such as 
large-scale TC activities. 

There are various experimental design approaches to 
investigate the effects of sub-grid configurations on TCs 
in SPCAM. One method involves conducting long-term 
climatology experiments to analyze the number of TCs or 
other TC-related statistics. Another approach is the short-
term hindcast method, as employed by Ma et al. (2013, 
2021). Their study illustrated that this approach could 
identify systematic biases arising from rapid moist 
processes within a few days by directly comparing with 
observational or reanalysis data. Patricola and Wehner 
(2018) adopted the hindcast method to simulate specific 
TC events and evaluate anthropogenic influences using 
pre-industrial and future projection forcings. Their 
findings suggested that the most intense TCs are 
projected to strengthen in a warmer climate, while 
changes in TC intensity between past and present 
climates were deemed insignificant. The short-term 
hindcast approach preserves a similar large-scale 
environment to the initial conditions, allowing for 
sensitivity experiments that are comparable with 
observations by diagnosing fast moist convective 
processes. Thus, we will conduct SPCAM hindcast 
experiments firstly to evaluate TC frequency under 
different CRM horizontal scales. 

The paper is structured as follows: Section 2 describes 
the model and experiment design, including the hindcast 
setup and TC detection algorithm. The simulation and 
analysis results are presented in Section 3, followed by a 
summary and discussion in Section 4. 

2. METHODOLOGY 

2.1 Model and Experiments 

The model used in this study is superparameterized 
CESM version 1.1.1. To simulate TCs in SPCAM, we use 
0.9°×1.25° horizontal resolution and 30 levels in the 
vertical. The CRM resolution is 4 km with a periodic 
boundary condition, and the microphysics scheme is a 
single-moment scheme (Khairoutdinov and Randall, 
2003; Khairoutdinov et al., 2005). The sensitivity of the 
coupling between convection and the large-scale 
environment is assessed by modifying the horizontal 
domain size of the sub-grid CRM. Three experiments are 
conducted by using domain sizes of 32, 128, and 1024 
km with a 4-km horizontal resolution, and are denoted as 
D32, D128, and D1024, respectively. These experiments 
represent the degrees of freedom for convection to 
develop. The larger domain size is expected to allow a 
broader cloud spectrum or a more intense convective 
cloud to develop in a single timestep. 

2.2 Hindcast setup 

The hindcast experiment spans from June to September 
2017, with daily initialization, resulting in a total of 122 
initializations. Each experiment is integrated for 10 days, 
amounting to 1220 days of simulation. Initial conditions 
are derived from the fifth generation ECMWF 
atmospheric reanalysis (ERA5; Hersbach et al. 2020), 
while sea surface temperature (SST) and sea ice are 
prescribed using Optimum Interpolation SST (OISST) 
version 2.1 (Huang et al. 2021). This approach facilitates 
direct comparison with observational data, with each day 
of the simulation denoted from Day 0 to Day 9. Ensemble 
averages from specific hindcast days, such as Day 0 
averaged across all 122 simulations, represent the 2017 
summer average, with varying degrees of influence from 
initial conditions. Consequently, ensemble averages from 
Day 0 to Day 9 capture the transition from initial-condition 
dominance to model-intrinsic behavior. 

Given that ERA5 serves as the basis for initial conditions, 
it is also partitioned into 122 10-day hindcast periods for 
validation purposes. The same procedure is applied to 
the Global Precipitation Measurement (GPM) IMERG 
product, which serves as precipitation validation data 
(Huffman et al., 2019). 

2.3 Algorithm for Tropical Cyclones 

To properly identify TCs in SPCAM, we adopt the 
definition established by Oouchi et al. (2006), with 
adjustments to enhance identification from ERA5 data. 
The criteria are outlined as follows: 

(1) The minimum sea-level pressure is at least 2 hPa 
lower than the average surface pressure over the 
surrounding 7˚ x 7˚ grid box. 

(2) The magnitude of the maximum relative vorticity at 
850 hPa exceeds 3.5 x 10-5 s-1. 

(3) The maximum wind speed at 850 hPa is larger than 
15 m s-1. 
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(4) The maximum wind speed at 850 hPa exceeds that 
at 300 hPa. 

(5) The duration is not shorter than 36 hours. 

(6) The surface pressure is below 1008 hPa. 

(7) The objects whose minimum surface pressure falls 
below 880 hPa within the surrounding 5˚ × 5˚ grid box 
are excluded. 

(8) The SST is higher than 26 °C for at least one 
timestep. 

Grids satisfying the criteria and their neighboring grids 
are interconnected and tracked using a method outlined 
by Moseley et al. (2019). Criteria (1)-(5) are the same as 
Oouchi et al. (2006). Criterion (6) ensures a minimum TC 
strength. Criterion (7) can help filter out the topography. 
Criterion (8) confines tracks to those passing through 
tropical oceans, thereby excluding extratropical cyclones. 
These criteria are applied to both SPCAM experiments 
and ERA5 data with the exact resolution for a fair 
comparison. Figure 1 illustrates TCs diagnosed by this 
algorithm from the ERA5 data from 28 July 2017 to 5 
August 2017. During this period, four TCs occurred, all 
accurately detected by the algorithm. However, there are 
occasional rare events that can complicate TC track 
identification. For example, Typhoons Haitang and Nesat 
merge into one TC by the algorithm at 01UTC on 30 July, 
then split after 3 hours. While this merge and split 
behavior may cause TC track shifts, it does not affect TC 
numbers or areas, which will be further analyzed in 
subsequent sections. The TC areas circled by color 
contours are the grids that pass the TC algorithm, and the 
TC tracks are the lines connecting the center of the TC 
areas. 

3. RESULT 

3.1 TC precipitation 

Figure 2 shows the ensemble average of TC 
precipitation over the western North Pacific along the 
hindcast days. Each hindcast day represents the 2017 
summer average, spanning from different days 
depending on the duration of the simulations (e.g., 
20170601 to 20170930 for Day 0, and 20170610 to 
20171009 for Day 9). The figure shows a systematic bias 
associated with the CRM horizontal scales. On Day 0, all 
experiments are close to the observation/reanalysis. 
However, in the later hindcast days, all experiments 
exhibit higher precipitation compared to the observation. 
Notably, D32 shows the most significant increase, with 
precipitation exceeding the GPM observation by over 0.3 
mm h-1 on Day 8. In contrast, D1024 maintains a bias of 
less than 0.05 mm d-1 relative to the observation across 
the hindcast days. D1024 also exhibits a smoother 
transition, while precipitation in D32 and D128 sharply 
increases before Day 7. This increase can be contributed 
by more TCs or/and more intense rainfall by a single TC. 
Before analyzing the overall precipitation difference 
among the experiments, we will first demonstrate a TC 

case to understand the TC simulations across different 
hindcast days. 

 
Figure 1. TCs diagnosed by the TC algorithm using 
ERA data. The shading is relative vorticity. The blue 
arrows are the wind field at 850 hPa and the 
magnitude stronger than 15 m s-1. The black contour 
is sea-level pressure from 1000 hPa with a 2-hPa 
interval. The color contours and lines present TCs 
from 28 July 2017 to 5 August 2017. The interval of 
color contours is 24 hours. The names of TCs are 
labeled below the paths. 

3.2 A case study for Typhoon Talim 

With the hindcast approach, we can directly assess the 
performance of TC simulation in each experiment using 
a real TC case. For this purpose, we selected Typhoon 
Talim over the western North Pacific as an example. 
According to best track data from the Japan 
Meteorological Agency (JMA), Typhoon Talim was 
identified as a tropical depression at 20170908 12Z and 
strengthened into the typhoon category at 20170911 18Z. 
Figure 3 depicts the tracks of Typhoon Talim from ERA5 
and in the experiments, with the closest TC identified 
within 900 km of the center of Typhoon Talim at 
20170911 18Z marked with a typhoon symbol. The 900 
km criterion was chosen to avoid confusion with Typhoon 
Doksuri, which locates around the south of Typhoon 
Talim. We selected the initial date 20170907 for analysis 
because it represents the earliest initialization when 
Typhoon Talim can be identified within the 10-day 
integration period in all experiments. Figure 4 illustrates 
the maximum wind speed at 850 hPa and precipitation 
rate within the defined area of Typhoon Talim. It is 
observed that Typhoon Talim is detected earlier in D32 
compared to D128 and D1024. In D32, it intensifies more 
rapidly at the early stage, with maximum precipitation 
reaching 23 mm h-1 and maximum wind speed reaching 
45 m s-1, while in D1024, the corresponding values are 
only 6 mm h-1 and 24 m s-1, respectively. This 
discrepancy indicates that, for Typhoon Talim, D32 
intensifies earlier than in the other experiments and 
produces more rainfall. Although the TCs in D128 and 
D1024 intensify further at a later stage, there are 
variations in tracks and environments among the 
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experiments (Fig. 3), making direct comparison less 
suitable. 

This case study highlights clear systematic differences 
in wind speed and precipitation among the experiments 
during the first four hindcast days. However, internal 
variabilities emerge later in the simulations. 
Consequently, the subsequent comparison will focus on 
the overall statistics of all tropical cyclones in the 
experiments. 

Figure 2. The ensemble average of TC precipitation over 
the western North Pacific (0˚ - 40˚N, 100˚E - 180˚E) by 
each hindcast day. The blue, purple, and red lines 
represent experiments D32, D128, and D1024, 
respectively. The black line is observation, where 
precipitation is from the GPM, and TC areas are 
diagnosed from ERA5 data. 

 

 

Figure 3. Diagnosed tracks of Typhoon Talim (2017). 
The red, purple, and red colors are experiments D32, 
D128, and D1024, respectively. The black color 
represents the diagnosed track from ERA5. The colors 
from light to dark represent the hindcast initial date from 
early to late. 

 

 

Figure 4. The hindcast runs initialed on 7 September 
2017 of (a) maximum wind speed at 850 hPa and (b) 
maximum precipitation within Typhoon Talim. The 
dashed line illustrates the time of 18Z 11 September 2017, 
when Typhoon Talim intensified to typhoon category by 
the best track data from the Japan Meteorological 
Agency. 

3.3 TC statistics 

Table 1 presents the TC numbers and lifetimes in all 
experiments alongside the reanalysis data. ERA5 data is 
regridded to match the horizontal resolution of SPCAM 
and divided into 122 hindcast cases to align with the 
experiments. On average, D32, D128, and D1024 
generate 8.07, 4.88, and 3.73 TCs per 10-day simulation, 
respectively, while only 3.42 TCs are diagnosed from 
ERA5. TC lifetimes do not differ significantly among the 
three experiments, all being shorter than ERA5 by 
approximately 10 hours. 

Although D32 generates twice as many TCs as D1024, 
the strength of the TCs is not weaker. Figure 5 depicts 
the maximum 850-hPa wind speed and the maximum 
precipitation rate for each TC. The wind speed is higher 
in D32 than in D128 and D1024, and the spread (full 
range and interquartile range) is also more extensive.The 
precipitation rate shows a more significant difference 
among the three experiments. D32 can produce 
precipitation over 30 mm h-1; the average is over 5 mm h-

1 higher than D128 and D1024. This result implies that 
the environment in D32 is more favorable for TC genesis 
and development. 

Regarding spatial distribution (Fig. 6), all SPCAM 
experiments can generate TCs in the southern Indian 
Ocean, which does not exist in ERA5. The experiments 
also exhibit an excess of TC tracks around the central 
North Pacific, whereas no TC tracks are observed in the 
reanalysis data. This bias is weaker in D128 and D1024 
but most severe in D32. In the South China Sea and the 
eastern Pacific, the TC track density of D32 is over 50 
hours higher than the others. This result suggests that 
D32 produces more TCs likely due to a wider spatial 
distribution and higher occurrence frequency of TCs. It 
also explains why D32 yields more TC precipitation over 
the western North Pacific (Fig. 2). 
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Table 1. TC statistics of ERA5, D32, D128, and D1024 

Exp. ERA5 D32 D128 D1024 

Total TC 
number 

417 985 595 455 

Number 
per 10 days 

3.42 8.07 4.88 3.73 

Average 
lifetime [hr] 

103.81 95.22 90.54 95.85 

 

 

Figure 5. box plots of (a) Maximum wind speed at 850 
hPa and (b) maximum precipitation for all TC events. 

 

 

Figure 6. The ensemble average TC track density on the 
TC areas for (a) ERA5, (b) D32, (c) D128, and (d) 
1024. The TC areas are defined as circled areas in 
Fig. 1. The unit is hours per summer (June - 
September). 

 

3.4 Moisture Bias 

TC genesis and TC tracks can be influenced by various 
factors, including SST, vertical wind shear, vertical 
instability, environmental vorticity, and humidity. Given 
our hindcast approach, some factors play a minor role in 
explaining the difference in TC genesis among the 
experiments. For instance, SST is consistent across all 
experiments, and the large-scale environment remains 
relatively stable during the 10-day hindcast experiments. 
Therefore, the convective process is the most significant 
factor influencing TC genesis within this short period. 

A relative convective bias in SPCAM has been identified 
by Kuo and Neelin et al. (2020), who evaluated model 
biases of convective parameterization by analyzing 
precipitation rates as a function of column-integrated 
water vapor (CWV) and tropospheric temperature (Tave; 
equivalent to column-integrated saturation humidity in 
their paper). Their findings indicate that SPCAM exhibits 
a gentler slope for precipitation pickup with higher Tave, 
and the CWV probability density functions (PDFs) extend 
to a high CWV regime under high Tave. At the same time, 
it is close to observation for low Tave. We apply the same 
analysis technique to our experiments, focusing on the 
CWV PDFs.  

Figure 7 illustrates the CWV PDFs for observations and 
the three experiments across different ocean basins 
bounded by 20˚S and 20˚N. The colors represent 
different Tave conditional samplings. In observation, the 
CWV PDFs increase rapidly between CWV values of 10 
and 30 mm in the western Pacific (Fig. 7a). Then, the 
PDFs slowly increase (decrease) for high (low) Tave. 
When CWV reaches a certain threshold, the PDFs drop 
sharply, indicating rapid moisture removal. The CWV 
PDFs in other ocean basins (Figs. 7e,i,m) exhibit similar 
patterns to those in the western Pacific. The dashed lines 
in Fig.7 roughly illustrate the upper bound of CWV PDFs 
for Tave > 271 K in each ocean basin in observation. If a 
CWV PDF extends to a higher CWV regime, it suggests 
that the environment is wetter on average under the Tave. 

This moist bias becomes severe in D32 across the 
ocean basins (Figs. 7b,f,j,n), with unrealistic PDF peaks 
for CWV higher than the observation. In the Atlantic, for 
example, Fig. 7j exhibits a clear bifurcation for 273 K, and 
the CWV of a PDF peak is higher than the upper bound 
of observation (i.e., the dashed line) , indicating an 
unstable environment. Similar biases are observed in the 
western and eastern Pacific, albeit with weaker 
bifurcations at 274 K and 273 K, respectively (Figs. 7b,f). 
In the Indian Ocean, while the bias of CWV PDFs 
extending into moister conditions persists, the bifurcation 
is less evident. 
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Figure 7. CWV PDFs for (a)(e)(i)(m) observations and experiments of (b)(f)(j)(n) D32, (c)(g)(k)(o) D128, and (d)(h)(l)(p) 
D1024 over (a)-(d) the Western Pacific, (e)-(h) the Eastern Pacific, (i)-(l) the Atlantic, and (m)-(p) the Indian Ocean 
within 20˚S and 20˚N. The colors mark the conditional samplings by the tropospheric temperature averaged between 
1000 hPa and 200 hPa. The dashed lines illustrate the decline lines of the PDF in the observations in each ocean basin. 

 

Conversely, D1024 performs better than D32 and D128. 
The upper bound of CWV PDFs closely matches 
observations in the eastern Pacific and Atlantic (Figs. 
7h,l). For the western Pacific and the Indian Ocean, while 
the upper bounds are similar to observations, the peaks 
of CWV PDFs are lower, resulting in flatter slopes than 
observed (Figs. 7d,p). Generally speaking, the moist 
CWV bias in D1024 is small.  

The CWV PDFs reveal a significant moisture bias of 
high CWV under high Tave conditions for D32. Conversely, 
D1024 exhibits relatively reasonable CWV PDFs among 
all experiments. This result suggests that D32 is less 
efficient in adjusting convective instability. In the following 
subsection, we will focus on the spatial distribution of the 
event of high CWV under high Tave conditions. 

3.5 High Tave-high CWV events and TCs 

SPCAM exhibits unrealistically high CWV under high 
Tave conditions, particularly evident in experiment D32. In 

these high Tave-high CWV regions, TCs are expected to 
play a significant role in moisture consumption and the 
maintenance of high Tave, typically featuring a warm core 
structure. Figure 8 examines the occurrence probability 
for Tave > 271 K and CWV > 70 mm and the probability of 
these events co-occurring with TCs. The left panel 
illustrates the spatial distribution of the probability of the 
high Tave-high CWV events. These events are most 
frequent in the Bay of Bengal in both observations and 
simulations. Other regions, such as the eastern Arabian 
Sea, the western North Pacific, and the North Atlantic, 
also exhibit these events in observations. The SPCAM 
simulations reproduce a similar distribution but cover 
broader areas , especially in experiments with smaller 
CRM scales. Notably, these areas are correspond to 
regions with a significant bias of TC track density (Fig. 6), 
including the South China Sea, the southern Indian 
Ocean, and the eastern North Pacific, and more severe 
for D32 in the central Pacific. The consistent spatial 
distributions suggest a possible relationship between the 
high Tave-high CWV events and TCs. 
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Figure 8. The left column is the occurrence probability for CWV > 70 mm and Tave > 271 K. The right column is the 
occurrence probability of TCs under the high CWV and Tave conditions. 

 

The right panel of Fig. 8 presents the occurrence 
probability of TCs during the high Tave-high CWV events. 
These events are typically associated with TCs in the 
western North Pacific and the North Atlantic in the 
observation. In the North Atlantic, this feature is 
consistent throughout all experiments. However, for 
experiments with smaller CRM domain sizes over the 
western North Pacific, this relationship appears weaker. 
The difference between the North Atlantic and the 
western North Pacific may be attributed to differences in 
the specific mechanisms of TC genesis. The environment 
in the North Atlantic is generally dryer and colder than in 
the western North Pacific. TC genesis in the Atlantic is 
primarily linked to easterly waves, resulting in high Tave-
high CWV events due to TC-induced moisture 
convergence and convective heating. In contrast, TC 
genesis in the western North Pacific is more complex, 
involving other weather systems such as the MJO 
(Liebmann et al. 1994) and the summer monsoon (Wu et 
al. 2011). Moreover, the moist and warm environment in 
the western North Pacific typically leads to high 
convective instability. Therefore, TCs can either cause or 
result from high Tave-high CWV events in this region. 

Another perspective is that the high Tave-high CWV 
events should occur primarily under strong convergence 
conditions such as those associated with TCs. A larger 
CRM domain can efficiently consume water vapor 
through deeper convection and the accompanied strong 
subsidence, meaning that only strong low-level water 
vapor convergence can accumulate CWV and maintain 
high Tave. Conversely, in smaller CRM domains, 
convection may be less efficient in consuming water 
vapor, allowing CWV to accumulate rapidly even under 
weak convergence conditions. To further investigate the 
lower efficiency of convection in D32, we will examine the 
average mass fluxes for convective clouds in the 
experiments. 

3.6 Convective clouds in CRMs 

Mass fluxes of convective clouds offer insight into the 
environmental difference in different CRM domain sizes. 
We define convective clouds as the mixing ratio of cloud 
water and cloud ice is more than 105 kg kg-1 for all levels 
within 2 km to 6 km, with vertical velocity is higher than 1 
m s-1. Figure 9 illustrates the average mass flux and cloud 
top height of convective clouds in each experiment. 
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D1024 shows the strongest mass flux and highest 
convective cloud top, while D32 exhibits the weakest 
mass flux and the lowest convective cloud top. This result 
suggests that horizontal scale influences convective 
cloud development, with smaller domain sizes limiting 
convection development, resulting in weaker vertical 
transport and lower convective cloud tops. This result is 
summarized in the schematic diagram in Fig. 10, 
illustrating the differences in cloud distribution between 
D1024 and D32 under convective conditions. In D1024, 
multiple convective clouds can coexist simultaneously, 
with strong convection extending deeper into the 
tropopause. Conversely, D32 can only accommodate 
one or a few convective clouds, which are weaker, with 
lower cloud top heights. Inadequate domain size can 
suppress convective cloud development, as a convective 
cloud may inhibit further growth through the 
compensating downdraft. Consequently, domain size 
constrains convective strength, leading to low efficiency 
in transporting water vapor from the boundary layer into 
the mid-troposphere and above. More water vapor will, 
therefore, accumulate within the boundary layer for the 
small CRM domain size, leading to higher CWV on 
average. Pritchard et al. (2014) also mentioned a similar 
effect. Their result emphasized on the difference in low 
clouds, while our result reveals the impact on convective 
clouds.  

 

Figure 9. The mean mass fluxes for convective clouds. 
The convective clouds are defined as cloud water 
plus cloud ice > 10-5 kg kg-1 for all levels within 2 km 
to 6 km, and vertical velocity > 1 m s-1. The average 
convective cloud top height is labeled at the upper 
right corner for each experiment. 

 

The inefficiency of sub-grid convection in consuming 
convective instability suggests that D32 requires 
additional large-scale forcing at the GCM scale to 
facilitate convective instability release, a role often played 
by TCs. However, within the SP framework, increased 
instability can only be advected because convective 
processes are confined to the sub-grid. Consequently, 
convective processes cannot rapidly adjust the high CWV 
bias in experiments with smaller CRM domains. 
Consequently, D32 exhibits more events and broader 
distribution of high Tave-high CWV conditions. 

 

4. SUMMARY AND DISCUSSION 

This study carried out a set of hindcast experiments 
using SPCAM to examine the effects of sub-grid 
convection processes on TC statistics. A clear difference 
in the number of simulated TCs can be identified among 
three experiments for 32-, 128-, and 1024-km horizontal 
scales in CRMs of the SPCAM. More frequent and 
intense TCs are generated in the configuration with a 
smaller CRM domain size. To further link the changes in 
TC statistics to the sub-grid convective processes, we 
examined the CWV PDFs. There was a more severe 
moisture bias in D32 than in the other two experiments 
with a larger CRM domain, with more frequent high CWV 
events under warm tropospheric temperature conditions, 
leading to a very different relationship among CWV, 
temperature, and TCs. The statistics revealed the 
inefficiency to consume water vapor by convection when 
the CRM domain is small. This domain size dependence 
is also identified in the average convective mass fluxes, 
and the experiments with larger domain sizes exhibit 
stronger mass fluxes. 

Naturally, TCs can be tightly associated with high Tave-
high CWV events. However, while most high Tave-high 
CWV events in D1024 are associated with TCs, this 
correlation is weaker in D32. This suggests that most high 
Tave-high CWV events in D1024 are induced by TCs, 
whereas D32 produces warmer and wetter environments 
more frequently due to the inefficient sub-grid water 
vapor removal, which is not directly related to TCs. We 
demonstrate that the larger CRM domain size exhibits 
more realistic CWV removal than the smaller one. This 
bias quickly accumulates in D32 because CWV can only 
be removed through the sub-grid processes under the SP 
framework. As a result, the frequent occurrence of high 
convective instability regions leads to more numerous TC 
genesis and development. 

Our results also have an important implication for the 
convection parameterization based on SPCAM outputs 
using the machine learning method. Although the cloud-
resolving approach captures the variability in convective 
structure more realistically than conventional 
parameterization, the results obtained in this study 
suggest that more variability can be generated by the 
CRM model configurations, especially in the extreme 
events such as tropical cyclones due to the strong 
convection-large scale interactions. For parameterization 
based on machine learning, the additional combination of 
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convection-large scale environment samplings provide 
the scenario for learning such interactions. This echoes 
Jones et al. (2019a; 2019b) that an ensemble approach 
is needed for the SPCAM to better represent climate 
variability. In addition, model physics in the embedded 
CRM can also play a role in modulating the convection-
large-scale interactions. Huang and Wu (2020) 
demonstrated that even under a strong large-scale 
forcing, the simulated precipitation spectrum can be 
different when different microphysics schemes are 
adopted. 

While we highlight numerous advantages of employing 
a larger CRM domain size, certain biases remain 
unaddressed. Notably, D1024 showcases a poleward 
shift of the Intertropical Convergence Zone (ITCZ) and 
South Pacific Convergence Zone (SPCZ), resulting in 
pronounced precipitation pattern discrepancies. This 
issue may stem from circulation alterations induced by 
non-uniform energy distribution. Idealized rotating 
aquaplanet experiments can offer further insights into the 
interplay between convection, circulation, and energy 
distribution across varying CRM configurations. 

 

Figure 10. A schematic diagram adapted from a snapshot of the experiments (a) D1024 and (b) D32. The blue shading 
represents the water vapor mixing ratio. The green arrows represent the updraft of convection. The yellow arrows 
represent the compensating subsidence to convection. The bottom and top dashed lines represent the boundary 
layer and the tropopause, respectively. 

 

REFERENCES 

Benedict, J. J., & Randall, D. A. (2009). Structure of the 
Madden–Julian Oscillation in the 
Superparameterized CAM. Journal of the 
Atmospheric Sciences, 66(11), 3277–3296. 
https://doi.org/10.1175/2009JAS3030.1 

Cheng, A., & Xu, K.-M. (2014). An explicit 
representation of vertical momentum transport in 
a multiscale modeling framework through its 2-D 
cloud-resolving model component. Journal of 
Geophysical Research: Atmospheres, 119(5), 
2356–2374. 
https://doi.org/10.1002/2013JD021078 

DeMott, C. A., Randall, D. A., & Khairoutdinov, M. 
(2007). Convective Precipitation Variability as a 
Tool for General Circulation Model Analysis. 
Journal of Climate, 20(1), 91–112. 
https://doi.org/10.1175/JCLI3991.1 

DeMott, C. A., Stan, C., Randall, D. A., Kinter, J. L., & 
Khairoutdinov, M. (2011). The Asian Monsoon in 
the Superparameterized CCSM and Its 
Relationship to Tropical Wave Activity. Journal of 
Climate, 24(19), 5134–5156. 
https://doi.org/10.1175/2011JCLI4202.1 

Emanuel, K. (2021). Response of Global Tropical 
Cyclone Activity to Increasing CO2: Results from 
Downscaling CMIP6 Models. Journal of Climate, 
34(1), 57–70. https://doi.org/10.1175/JCLI-D-20-
0367.1 

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & 
Yacalis, G. (2018). Could Machine Learning Break 
the Convection Parameterization Deadlock? 
Geophysical Research Letters, 45(11), 5742–
5751. https://doi.org/10.1029/2018GL078202 

Held, I. M., & Zhao, M. (2011). The Response of 
Tropical Cyclone Statistics to an Increase in CO2 
with Fixed Sea Surface Temperatures. Journal of 
Climate, 24(20), 5353–5364. 
https://doi.org/10.1175/JCLI-D-11-00050.1 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., 

Horányi, A., Muñoz‐Sabater, J., et al. (2020). The 

ERA5 global reanalysis. Quarterly Journal of the 
Royal Meteorological Society, 146(730), 1999–
2049. https://doi.org/10.1002/qj.3803 

Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, 
G., Hankins, B., et al. (2021). Improvements of the 
Daily Optimum Interpolation Sea Surface 
Temperature (DOISST) Version 2.1. Journal of 
Climate, 34(8), 2923–2939. 
https://doi.org/10.1175/JCLI-D-20-0166.1 

Huang, J., & Wu, C. (2020). Effects of Microphysical 
Processes on the Precipitation Spectrum in a 
Strongly Forced Environment. Earth and Space 
Science, 7(6), 1–9. 
https://doi.org/10.1029/2020EA001190 

Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, 
& Tan, J. (2019). GPM IMERG Final Precipitation 



10 

 

L3 Half Hourly 0.1 degree x 0.1 degree V06. 
https://doi.org/10.5067/GPM/IMERG/3B-HH/06 

Jones, T. R., Randall, D. A., & Branson, M. D. (2019a). 

Multiple‐Instance Superparameterization: 1. 

Concept, and Predictability of Precipitation. 
Journal of Advances in Modeling Earth Systems, 
11(11), 3497–3520. 
https://doi.org/10.1029/2019MS001610 

Jones, T. R., Randall, D. A., & Branson, M. D. (2019b). 

Multiple‐Instance Superparameterization: 2. The 

Effects of Stochastic Convection on the Simulated 
Climate. Journal of Advances in Modeling Earth 
Systems, 11(11), 3521–3544. 
https://doi.org/10.1029/2019MS001611 

Khairoutdinov, M. F., & Randall, D. A. (2001). A cloud 
resolving model as a cloud parameterization in the 
NCAR Community Climate System Model: 
Preliminary results. Geophysical Research 
Letters, 28(18), 3617–3620. 
https://doi.org/10.1029/2001GL013552 

Khairoutdinov, M. F., & Randall, D. A. (2003). Cloud 
Resolving Modeling of the ARM Summer 1997 
IOP: Model Formulation, Results, Uncertainties, 
and Sensitivities. Journal of the Atmospheric 
Sciences, 60(4), 607–625. 
https://doi.org/10.1175/1520-
0469(2003)060<0607:CRMOTA>2.0.CO;2 

Khairoutdinov, M., Randall, D., & DeMott, C. (2005). 
Simulations of the Atmospheric General 
Circulation Using a Cloud-Resolving Model as a 
Superparameterization of Physical Processes. 
Journal of the Atmospheric Sciences, 62(7), 
2136–2154. https://doi.org/10.1175/JAS3453.1 

Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, 
K., Ho, C.-H., Kossin, J., et al. (2020). Tropical 
Cyclones and Climate Change Assessment: Part 
II: Projected Response to Anthropogenic 
Warming. Bulletin of the American Meteorological 
Society, 101(3), E303–E322. 
https://doi.org/10.1175/BAMS-D-18-0194.1 

Kuo, K.-T., Chen, W.-T., & Wu, C.-M. (2020). Effects of 
convection-SST interactions on the South China 
Sea summer monsoon onset in a multiscale 
modeling framework model. Terrestrial, 
Atmospheric and Oceanic Sciences, 31(2), 211–
225. https://doi.org/10.3319/TAO.2019.08.16.01 

Kuo, Y.-H., Neelin, J. D., Chen, C.-C., Chen, W.-T., 
Donner, L. J., Gettelman, A., et al. (2020). 
Convective Transition Statistics over Tropical 
Oceans for Climate Model Diagnostics: GCM 
Evaluation. Journal of the Atmospheric Sciences, 
77(1), 379–403. https://doi.org/10.1175/JAS-D-19-
0132.1 

Kuo, Y.-H., Schiro, K. A., & Neelin, J. D. (2018). 
Convective Transition Statistics over Tropical 
Oceans for Climate Model Diagnostics: 
Observational Baseline. Journal of the 

Atmospheric Sciences, 75(5), 1553–1570. 
https://doi.org/10.1175/JAS-D-17-0287.1 

Liebmann, B., Hendon, H. H., & Glick, J. D. (1994). The 
Relationship Between Tropical Cyclones of the 
Western Pacific and Indian Oceans and the 
Madden-Julian Oscillation. Journal of the 
Meteorological Society of Japan. Ser. II, 72(3), 
401–412. 
https://doi.org/10.2151/jmsj1965.72.3_401 

Ma, H.-Y., Xie, S., Boyle, J. S., Klein, S. A., & Zhang, Y. 
(2013). Metrics and Diagnostics for Precipitation-
Related Processes in Climate Model Short-Range 
Hindcasts. Journal of Climate, 26(5), 1516–1534. 
https://doi.org/10.1175/JCLI-D-12-00235.1 

Ma, H.-Y., Zhou, C., Zhang, Y., Klein, S. A., Zelinka, M. 
D., Zheng, X., et al. (2021). A multi-year short-
range hindcast experiment with CESM1 for 
evaluating climate model moist processes from 
diurnal to interannual timescales. Geoscientific 
Model Development, 14(1), 73–90. 
https://doi.org/10.5194/gmd-14-73-2021 

Mooers, G., Pritchard, M., Beucler, T., Ott, J., Yacalis, 
G., Baldi, P., & Gentine, P. (2021). Assessing the 
Potential of Deep Learning for Emulating Cloud 
Superparameterization in Climate Models With 

Real‐Geography Boundary Conditions. Journal of 

Advances in Modeling Earth Systems, 13(5), 1–
26. https://doi.org/10.1029/2020MS002385 

Moseley, C., Henneberg, O., & Haerter, J. O. (2019). A 
Statistical Model for Isolated Convective 
Precipitation Events. Journal of Advances in 
Modeling Earth Systems, 11(1), 360–375. 
https://doi.org/10.1029/2018MS001383 

Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., 
Kusunoki, S., & Noda, A. (2006). Tropical Cyclone 
Climatology in a Global-Warming Climate as 
Simulated in a 20 km-Mesh Global Atmospheric 
Model: Frequency and Wind Intensity Analyses. 
Journal of the Meteorological Society of Japan. 
Ser. II, 84(2), 259–276. 
https://doi.org/10.2151/jmsj.84.259 

Patricola, C. M., & Wehner, M. F. (2018). Anthropogenic 
influences on major tropical cyclone events. 
Nature, 563(7731), 339–346. 
https://doi.org/10.1038/s41586-018-0673-2 

Pritchard, M. S., Bretherton, C. S., & DeMott, C. A. 
(2014). Restricting 32-128 km horizontal scales 
hardly affects the MJO in the Superparameterized 
Community Atmosphere Model v.3.0 but the 
number of cloud-resolving grid columns constrains 
vertical mixing. Journal of Advances in Modeling 
Earth Systems, 6(3), 723–739. 
https://doi.org/10.1002/2014MS000340 

Pritchard, M. S., & Somerville, R. C. J. (2009). 
Assessing the diurnal cycle of precipitation in a 
multi-scale climate model. Journal of Advances in 



11 

 

Modeling Earth Systems, 2(4), 12. 
https://doi.org/10.3894/JAMES.2009.1.12 

Randall, D., DeMott, C., Stan, C., Khairoutdinov, M., 
Benedict, J., McCrary, R., et al. (2016). 
Simulations of the Tropical General Circulation 
with a Multiscale Global Model. Meteorological 
Monographs, 56, 15.1-15.15. 
https://doi.org/10.1175/AMSMONOGRAPHS-D-
15-0016.1 

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep 
learning to represent subgrid processes in climate 
models. Proceedings of the National Academy of 
Sciences, 115(39), 9684–9689. 
https://doi.org/10.1073/pnas.1810286115 

Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., 
Hodges, K., Vannière, B., et al. (2020). Projected 
Future Changes in Tropical Cyclones Using the 
CMIP6 HighResMIP Multimodel Ensemble. 
Geophysical Research Letters, 47(14), 1–12. 
https://doi.org/10.1029/2020GL088662 

Tao, W.-K., & Chern, J.-D. (2017). The impact of 
simulated mesoscale convective systems on 
global precipitation: A multiscale modeling study. 
Journal of Advances in Modeling Earth Systems, 
9(2), 790–809. 
https://doi.org/10.1002/2016MS000836 

Villafuerte, M. Q., Lambrento, J. C. R., Hodges, K. I., 
Cruz, F. T., Cinco, T. A., & Narisma, G. T. (2021). 
Sensitivity of tropical cyclones to convective 
parameterization schemes in RegCM4. Climate 
Dynamics, 56(5–6), 1625–1642. 
https://doi.org/10.1007/s00382-020-05553-3 

Wu, L., Liang, J., & Wu, C.-C. (2011). Monsoonal 
Influence on Typhoon Morakot (2009). Part I: 
Observational Analysis. Journal of the 
Atmospheric Sciences, 68(10), 2208–2221. 
https://doi.org/10.1175/2011JAS3730.1 

Zarzycki, C. M. (2022). Sowing Storms: How Model 
Timestep Can Control Tropical Cyclone 
Frequency in a GCM. Journal of Advances in 
Modeling Earth Systems, 14(3), 1–21. 
https://doi.org/10.1029/2021MS002791 

Zhang, Y., Klein, S. A., Liu, C., Tian, B., Marchand, R. 
T., Haynes, J. M., et al. (2008). On the diurnal 
cycle of deep convection, high-level cloud, and 
upper troposphere water vapor in the Multiscale 
Modeling Framework. Journal of Geophysical 
Research, 113(D16), D16105. 
https://doi.org/10.1029/2008JD009905 

Zhao, M., Held, I. M., & Lin, S.-J. (2012). Some 
Counterintuitive Dependencies of Tropical 
Cyclone Frequency on Parameters in a GCM. 
Journal of the Atmospheric Sciences, 69(7), 
2272–2283. https://doi.org/10.1175/JAS-D-11-
0238.1 

 


