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1. INTRODUCTION

The representation of clouds, especially in the
tropics, remains the biggest uncertainty in con-
temporary climate modeling. The effects and
feedbacks associated with clouds are highly
complex and occur on scales ranging from mi-
crophysical (e.g. 1mm) to synoptic (1000 km).
General Circulation Models (GCMs) and Earth
System Models (ESMs) typically require grid
cells on the order of 100km wide, and there-
fore require so-called cloud parametrizations
to account for moist processes. Members of
the largest family of convective parametriza-
tions for GCMs and ESMs, the so-called Mass-
Flux Schemes, typically employ the Quasi-
Equilibrium (QE) assumption introduced by
Arakawa & Schubert [1]. In the QE assumption,
convection near-instantaneously consumes in-
stability to reduce the atmosphere to a stable
state. However, the QE assumption has been
heavily criticized. We examine some of these
criticisms.

2. ILL-POSEDNESS OF PROBLEM

One important issue with the QE assumption is
that it leads to a diagnostic closure which is es-
sentially ill-posed. In other words, if MB,λ is the
mass-flux at cloud base, associated with a cer-
tain cloud type, here denoted by λ, the cloud
work function (CWF) for λ-type clouds is de-
fined as

Aλ =

∫ zD(λ)

zB

Bλ
Mλ

MB,λ
dz,

where Bλ, Mλ and zD(λ) are respectively the
buoyancy, mass-flux, and detrainment height
for λ-type clouds.

Arakawa & Schubert compute the time-
derivative of the CWF, distinguish between con-
vective terms linearly dependent (through a so-
called ‘cloud kernel’ matrix K) on the base
mass fluxes, and large-scale forcing terms Fλ:
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d

dt
Aλ =

∫
K(λ, λ′)MB,λ′dλ′ + Fλ,

and set the time-derivative to zero, to obtain a
Fredholm integral equation of the second kind.
If a discrete instead of continuous spectrum of
cloud types is employed, the cloud kernel ma-
trix K discretizes to a matrix J , and we obtain

d

dt
Aλ︸ ︷︷ ︸

≈0

=
∑
λ′

Jλ,λ′MB,λ′ + Fλ,

which yields the linear algebra problem

MB,λ = −(J−1F )λ.

Unfortunately, the matrix J is ill-conditioned
or even singular, so that the above linear alge-
bra problem is not solveable in practice.

A common solution to the ill-posedness of
the diagnostic problem is to relax to a prognos-
tic closure, as in Pan & Randall [4]. In Pan &
Randall, evolution equations for the base mass-
fluxes are systematically derived from the tur-
bulent energy budget equations:

d

dt
Aλ =

∑
λ′

Jλ,λ′MB,λ′ + Fλ,

d

dt
Mλ,B = σλβλAλ −

1

τD
MB,λ,

where σλ is the area fraction occupied by λ-type
clouds, βλ is a dimensional constant represent-
ing buoyancy effects on the mass-flux tency,
and τD is a kinetic energy dissipation timescale.

With these equations, Pan & Randall
sidestep the issue of solving ill-posed linear al-
gebra problem.

3. INSTABILITY AT QUASI-EQUILIBRIUM

Another issue is that the argument put forth
by Arakawa & Schubert to set d

dtAλ ≈ 0 not
only explicitly invokes a time-scale separation
between convective and large-scale dynamics,
but assumes that under this time-scale sepa-
ration, the fast-time dynamics converge to the
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Figure 1: An example of the quasi-periodic, strange-
attractor-like dynamics resulting from coupling a single
cloud type to the SMCM equations for the cloud area frac-
tion. Along the axes are the cloud CWF A, the cloud base
mass flux M , and the cloud area fraction σ. For details, see
[3]

equilibrium. This is not so obvious, as we will
see.

Pan & Randall lend partial support to this hy-
poethesis. They show that when there is only a
single cloud type as well as a fixed, small, frac-
tional cloud area, the cloud mass flux exhibits
damped oscillations around quasi-equilibrium.
In other words, the fast convective processes
indeed converge to the quasi-equilibium.

However, in Khouider & Leclerc [3], it
is shown that interactions between different
cloud types can lead to instability at quasi-
equilibrium. The prognostic Pan-Randall equa-
tions described above, are coupled to a mean-
field limit of the Stochastic Multicloud Model
(SMCM) pioneered by Khouider and others
(see [2]). It is discovered that even in the
case of a single cloud type, variability in
the cloud area fraction alone is sufficient to
destabilize the quasi-equilibrium, and indeed
leads to a menagerie of dynamical phenomena
including chaos, hysteresis, quasi-periodicity,
and strange attractors. One exhibit in this
menagerie is depicted in Figure 1.

These results (i.e. that cloud-cloud ef-
fects or cloud area fraction variability are both
independently sufficient to destabilize quasi-
equilibrium) indicate that the quasi-equilibrium
assumption must be replaced with a closure
that more adequately represents the complex
unstable dynamics exhibited by cloud systems.

4. GREY-ZONE RESOLUTIONS

A further issue is that the Arakawa-Schubert
scheme, as a whole, predicated on a set of as-
sumptions which fail to hold at so-called grey-

Figure 2: A cartoon of the time-dependence of the cloud
area fraction on time. On the left, a cartoon of a grid
cell snapshot containing cloud types of various heights and
cross-sectionanl areas is depicted. On the top right and
bottom right, time series for the cloud area fraction for the
entire grid cell, and for a subset of the grid cell, are de-
picted. Over the entire area, the cloud fraction remains rel-
atively constant, while over a smaller area, the cloud frac-
tion is typically zero but occasionally spikes when clouds
appear inside of it.

zone horizontal resolutions, which we define
here as those horizontal- and time-scales at
which it is unclear how much of the convection
is captured by the GCM (or ESM) kernel and
how much by the parametrization. These can
be between 10-50km in the horizontal. Indeed,
they may even fail at the coarser-than-grey-
zone resolutions for which the scheme was de-
signed. These assumptions have been passed
down through most of the various Arakawa-
Schubert precursors, including Pan & Randall.

One of the most such important assumptions
is that the fractional cloud area is fixed and
small. However, especially at grey-zone reso-
lutions the cloud area fraction will not in gen-
eral be small and constant in time. Although its
time average may in principle still be small, the
cloud area fraction will intermittently saturate or
partially saturate the GSM (or ESM) grid cell.
A cartoon is offered in Figure 2, indicating the
statistical nature of this assumption.

When clouds saturate or partially saturate the
grid cell, many of the crucial assumptions un-
derlying the Arakawa-Schubert scheme and its
main descendants are no longer valid. Among
those assumptions are:

1. Due to the relative size of the environmen-
tal air region compared to the convective
regions, different clouds are nonadjacent
and thus only entrain environmental air,

2. For the same reason, the horizontal en-
vironmental average of scalar quantities
such as moisture and temperature may be
approximated by the horizontal grid-cell av-
erage,

3. Steady-state equations may be taken to
compute scalar quantities (such as mois-
ture, temperature, and so on) inside the
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cloud. This is supported by the conserva-
tion equation for a conserved variable ψ in
a cloud of type λ:

∂t(σλψλ) + ∂z(ψλMλ) = −∇ · (vψc) + Sψλ ,

where σλ, Mλ ψλ and Sψλ are respectively
the cloud area fraction, mass flux for the
cloud type, horizontally-averaged value of
ψ over the cloud, and cloud source term for
ψ. When the cloud area fraction σc is fixed
and small, the above equation essentially
becomes a fast-slow system and the time-
derivative can be neglected. The result is
a steady-state plume ODE for ψλ.

While models have been developed which
simulate the stochasticity of the cloud area frac-
tion depicted in Figure 1, such as Khouider [2],
these models do not typically address most of
the underlying conceptual issues enumerated
above.

We develop a cloud model from first-
principles, following the framework pioneered
by Arakawa-Schubert and Pan-Randall, but
proceeding cautiously where the above as-
sumptions (and others) are concerned. The re-
sultant model is scale-aware in that it interpo-
lates between the ’classical’ regimes in which
cloud area fraction is small (and all the typi-
cal Arakawa-Schubert assumptions hold) and
those in which clouds completely saturate the
grid cell.
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