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1. INTRODUCTION

With advancements in high-performance computing,
there is a transition to high-resolution (HR) models due to
their improved representation of climate mean states and
tropical cyclones (TCs), as evidenced by early-stage re-
search (e.g., Broccoli and Manabe 1990) and recent HR
climate modeling efforts (e.g., Chang et al. 2020). Pio-
neering studies have demonstrated that HR can improve
the model TCs within general circulation models (GCMs).
For instance, Bower and Reed (2024) investigated the
effects of climate change on TCs and their post-tropical
cyclone (PTC) stages using three HighResMIP models’
data, finding a consensus on fewer TC and PTC events in
future warming scenarios but inconsistencies in regional
changes and storm intensity evolution, while noting an in-
crease in heavy rain rates and a corresponding rise in
accumulated rainfall from these events.

However, most modern climate models continue to uti-
lize relatively coarse resolutions, owing to the necessity
of balancing improving the model resolution with meet-
ing the requirements to run simulations over many years.
For instance, the horizontal resolution of climate mod-
els in the recent World Climate Research Programme
(WCRP) Coupled Model Intercomparison Project Phase
6 (CMIP6) typically ranges from nominal 1° to 2.5° hor-
izontal resolution, albeit with some exceptions (Eyring
et al. 2016; Han et al. 2021). It is generally considered
that models have better skills in simulating large-scale
environmental conditions as opposed to TCs themselves.
E.g., Camargo et al. (2007) demonstrated that while there
is a strong relationship between the model genesis in-
dex (based on large-scale environmental conditions) and
observed TC variability, the correlation between the fre-
quency of model-simulated TCs and the mean genesis
index is relatively weak. This suggests that even though
low-resolution models might not precisely simulate in-
dividual TCs, they are capable of accurately capturing
large-scale environmental variables. Consequently, it is
believed that low-resolution models can still be utilized to
make future TC projections effectively.

This perspective faces challenges due to persistent er-
rors in the simulation of tropical sea surface temperatures
(SSTs) within climate models. Specifically, Camargo and
Wing (2015) reviewed advancements in simulating TCs
within climate models and argued that a significant chal-
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lenge lies in producing reliable projections of future SST
changes and their patterns, which are crucial for fore-
casting changes in TC frequency accurately in decadal
time scale. Sobel et al. (2023) examined the CMIP6
data and argue that both high and low-resolution coupled
models have inaccurately captured the transient dynam-
ics of tropical Pacific SSTs. Whereas historical obser-
vations indicate a trend towards increasingly frequent La
Niña events, these models have erroneously predicted a
shift towards more frequent El Niño events. This discrep-
ancy undermines their capability to accurately forecast
regional changes in the climatology of TCs. Coats and
Karnauskas (2018) highlight the importance of correctly
modeling the equatorial undercurrent (EUC) to accurately
simulate SSTs. Specifically, they emphasize the need
to account for the cooling effects in the eastern equato-
rial Pacific, which result from the EUC’s response to the
equatorial zonal wind stress.

Most recently, researches indicate that HR simulations
conducted using Community Earth System Model ver-
sion 1.3 (CESM1.3) have enhanced the representation of
large-scale ocean features (e.g., SSTs) in several ways.
For instance, Xu et al. (2022) observed that the global
mean SST in the CESM1.3 HR simulations is, on aver-
age, 1°C warmer compared to the lower resolution (LR)
simulations, resulting in diminished SST biases. This im-
provement in SST is primarily attributed to a more accu-
rate depiction of nonlocal vertical mixing and the manage-
ment of shortwave heat flux in the HR simulations. Sim-
ilarly, Li et al. (2022) demonstrated that HR simulations
offer a more reliable projection of sea-level rise, particu-
larly due to the improved simulation of the Gulf Stream
along the eastern coast of the United States.

In addition to SSTs, the upper ocean also plays a crit-
ical role in interactions with TCs, serving as the primary
interface for their development and intensification. The
warmth of the upper ocean acts as a source of energy
for TC formation, while the storm-induced mixing of wa-
ter can bring colder water from the thermocline to the
surface, leading to a reduction in sea surface temper-
ature. Consequently, the vertical temperature profile of
the upper ocean is a key factor in both the development
and rapid intensification of TCs, as well as in the feed-
back mechanisms between TCs and the ocean itself (Ko-
rty et al. 2008; Balaguru et al. 2015; Potter et al. 2019).
Therefore, accurate simulations of the upper ocean heat
content and its response to climate change are critical for
reliable future projections of TC activity.
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In this study, we aim to examine the effects of the hori-
zontal resolution of climate models, with a particular focus
on ocean model resolution, on SSTs and upper ocean
heat content. We will also explore how SST in turn in-
fluences the potential intensity of TCs. This research will
offer valuable insights into whether enhancing ocean res-
olution and improving the SST field can impact the projec-
tion of TC trends under future climate change scenarios.

2. DATA AND METHODS

This research primarily utilizes data from the CESM1.3
to investigate the influence of horizontal resolution on the
TCs’ potential intensity (PI) and upper ocean heat con-
tent. In addition, we incorporate data from six other mod-
els associated with the European PRIMAVERA project
(PRocess-based climate sIMulation: AdVances in high-
resolution modelling and European climate Risk Assess-
ment) to corroborate the findings from CESM1.3. The
PRIMAVERA models follow the protocols established
by the High Resolution Model Intercomparison Project
(HighResMIP) (Haarsma et al. 2016). These simula-
tions feature at least two different resolution configura-
tions to isolate the effects attributable to the model reso-
lution while keeping other configuration aspects minimal
changes. The specific resolutions employed in our study
for each model are listed in Table 1.

Model
name

Resolution
names

Atmosphere
horizontal
resolutions

Ocean hor-
izontal res-
olutions

CESM1.3 LR, HR 1°, 0.25° 1°, 0.1°
HadGEM3-
GC3.1

LL, HH 2.5°, 0.5° 1°, 1/12°

ECMWF-
IFS

LR, HR 0.5°, 0.25° 1°, 0.25°

CNRM-
CM6-1

LR, HR 2.5°, 1° 1°, 0.25°

EC-
Earth3P

LR, HR 1°, 0.5° 1°, 0.25°

CMCC-
CM2-
(V)HR4

HR4,
VHR4

1°, 0.25° 0.25°,
0.25°

MPI-
ESM1.2

HR, XR 1°, 0.5° 0.5°, 0.5°

TABLE 1. CESM and Six PRIMAVERA model horizontal
resolutions

2.1. CESM1.3

The International Laboratory for High-Resolution Earth
System Prediction (iHESP) project employs a dedicated
version of CESM1.3 to perform a set of simulations
(Chang et al. 2020). CESM1.3 integrates a fully coupled
atmosphere-ocean-ice system, consisting of the Commu-
nity Atmosphere Model version 5.2 (CAM5.2), the Paral-

lel Ocean Program version 2 (POP2), the Community Ice
Code version 4 (CICE4), and the Community Land Model
version 4 (CLM4). These simulations were carried out
using both standard (low) resolution (hereafter referred to
as LR) and high resolution (hereafter referred to as HR).
The LR configuration features a 1° resolution in the at-
mospheric model and a nominal 1° resolution in both the
ocean and sea-ice models. Conversely, the HR configu-
ration boasts finer resolutions of 0.25° in the atmospheric
model and 0.1° in the ocean and sea-ice models (Chang
et al. 2020; Xu et al. 2022).

For this study, we selected the 250-year (1850-2100)
historical and future transient simulation, hereinafter re-
ferred to as 1850-TNST, as our principal dataset. The
choice is motivated, firstly, by the fact that the 1850-TNST
branched off from the 1850 control simulation at year 250,
thereby ensuring a prolonged spin-up time of 250 years
that allows the ocean model to achieve a near-equilibrium
state, thus minimizing model drift. Secondly, the exten-
sive time span of the dataset, covering two and a half
centuries, provides a uniquely lengthy timeframe to exam-
ine the effects of model resolution on tropical cyclones,
an opportunity that is unparalleled in previous studies
(Chang et al. 2020). The 1850-TNST simulation applies
historical forcings from 1850 to 2005 and follows the Rep-
resentative Concentration Pathway 8.5 (RCP8.5) projec-
tions from 2006 to 2100 (Chang et al. 2020). It should be
noted that the future simulation forcing in the CESM1.3
is different from the PRIMAVERA models’ future forcing -
Shared Socioeconomic Pathways 585 (SSP585).

2.2. PRIMAVERA models

In this study, we incorporate data from six mod-
els within the PRIMAVERA project, namely HadGEM3-
GC3.1 (Roberts et al. 2019), ECMWF-IFS (Roberts
et al. 2018), CNRM-CM6-1 (Voldoire 2019), EC-Earth3P
(Haarsma et al. 2020), CMCC-CM2-(V)HR4 (Cherchi
et al. 2019), and MPI-ESM1.2 (Gutjahr et al. 2019). Some
models feature more than two resolution options; in such
cases, we select the lowest and highest resolutions for
our comparison to accentuate the contrast between low-
resolution (LR) and high-resolution (HR) simulations. For
example, HadGEM3-GC3.1 provides a tiered resolution
system (low, L; medium, M; high, H) for both its ocean
and atmosphere components, yielding five possible com-
binations (i.e., LL, MM, HM, MH, HH) where the first
letter represents the atmospheric model resolution and
the second letter represents the ocean model resolution
(Roberts et al. 2019). In this context, we use the LL
configuration as our LR set and the HH configuration as
our HR set. The ECMWF-IFS model offers three dis-
tinct resolution settings: ECMWF-IFS-HR, ECMWF-IFS-
MR, and ECMWF-IFS-LR. Notably, the ECMWF-IFS-HR
(ECMWF-IFS-LR) setup encompasses HR (LR) for both
atmospheric and ocean modeling, while the MR option
employs an LR atmospheric model coupled with an HR
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ocean model (Roberts et al. 2018). For our purposes, we
use data from the ECMWF-IFS-HR and ECMWF-IFS-LR
only.

The PRIMAVERA model experiments follow the proto-
cols outlined by the High Resolution Model Intercompar-
ison Project (HighResMIP). This includes a series of ex-
periments designed to facilitate the comparison of climate
models at different resolutions:

1. spinup-1950: A brief simulation spanning 30-50
years, using averaged ocean temperature and salinity to
force the models. This step establishes initial conditions
for subsequent experiments, control-1950 and hist-1950.

2. control-1950: A simulation run with constant forc-
ings representative of the 1950s, extended over a mini-
mum duration of 100 years.

3. hist-1950: A historical experiment with forcings from
1950 until 2014, the conclusions of which are used to ini-
tialize the highres-future experiment.

4. highres-future: A projection using the SSP585 future
scenario forcing, covering the period from 2015 to 2050
(Haarsma et al., 2016; Roberts et al., 2020).

Our study primarily focuses on the hist-1950 and
highres-future experiments since they provide a contin-
uous simulation spanning a full century.

2.3. Potential intensity

PI is the upper bound of tropical cyclone intensity for a
given environmental condition (i.e., sea surface temper-
ature, sea level pressure, atmosphere condition profile)
(Emanuel 1986; Bister and Emanuel 1998). PI is statis-
tically linked to the lifetime maximum of observed storms
(Emanuel 2000). Therefore, it is widely used to assess
the climatology of storms in various climate simulations
(e.g. Korty et al. 2017; Lawton et al. 2021; Wu and Ko-
rty 2022). Recent studies show that large values of PI
are becoming more frequent and have covered a larger
area over the North Atlantic in the past 40 years (Wu and
Korty 2022), which may pose more risks to the people
living in coastal areas. As mentioned earlier, we calcu-
late the monthly PI in the simulations using the script of
an open-source Python library (Gilford 2021) and use the
maximum wind speed (Vm) of storms to represent PI. It is
calculated using the following expression:

PI =

√
CK

CD

SST
T0

(CAPE∗−CAPEb) (1)

where CK and CD are the exchange coefficients for en-
thalpy and drag, respectively, SST is sea surface temper-
ature, T0 is the outflow temperature when convective air
reaches saturation, CAPE is the convective available po-
tential energy (CAPE). Superscript ∗ is used for the CAPE
of an air parcel lifted from saturation at the sea level pres-
sure in reference to the local environmental sounding.
Subscript b is used for the CAPE of an ambient bound-
ary layer parcel.

2.4. Upper Ocean Heat Content Parameters

The thermal profile of the ocean is a critical factor in
the development and rapid intensification of TCs, as the
enthalpy flux from the ocean surface to the atmosphere
is a direct source of energy for TCs. Conversely, TCs can
cause the upper layers of the ocean to mix, leading to
a reduction in water temperature. To explore the extent
to which the interactions between TCs and upper ocean
layers are captured in model simulations at different hori-
zontal resolutions, this study examines several indicators
related to the upper ocean’s heat content and its impact
on TCs. We compare these indicators across models with
high resolution (HR) and low resolution (LR). The indica-
tors include the ocean heat potential, the depth of the
mixing layer, and the length of variable mixing.

Potter et al. (2019) defined the Tropical Cyclone Heat
Potential (TCHP) using the following equation:

Q = cp

Z26

∑
Z0

ρi(Ti −26)∆zi, (2)

where cp represents the specific heat of seawater at
constant pressure, Ti denotes the water temperature in
degrees Celsius at the i-th level, ∆zi is the thickness of
the water layer at the i-th level (assumed to be 50 cm),
and ρi is the water density at the i-th level. Z0 and Z26
define the surface and the depth (in meters) respectively,
where the 26 ◦C isotherm is found. The TCHP measures
the available heat energy below the ocean’s surface that
can potentially fuel a tropical cyclone.

Balaguru et al. (2015) formulated an expression for the
variable mixing length resulting from TC wind forcing as
follows:

L = h+(
2ρ0u3

∗t
κgα

)
1
3 , (3)

where h represents the initial mixed layer depth, ρ0 de-
notes the sea water density, u∗ is the friction velocity, t
signifies the mixing duration, κ is the von Kármán con-
stant, g stands for the gravitational acceleration, and α

is the rate at which potential density increases with depth
beneath the mixed layer. This relationship bears similarity
to that derived by Korty et al. (2008), where the variable
mixing length exhibits an approximate linear dependence
on the wind force while showing a more weaker depen-
dence on stratification. Furthermore, they calculated the
vertically averaged temperature over the variable mixing
length:

Tdy =
1
L

∫ L

0
T (z)dz, (4)

where T (z) represents the temperature at depth z. Bal-
aguru et al. (2015) demonstrated that the computed Po-
tential Intensity (PI) when replaced with Tdy-termed the
Dynamic Potential Intensity (DPI)-provides a more accu-
rate explanation for the variance in TC intensification than
the original PI.
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In this study, we aim to compare the variables Q, h, L,
and Tdy between HR and LR simulations to investigate the
specific mechanisms responsible for the disparities.

3. RESULTS

FIG. 1. The multi-model storm season historical long-
term mean ensemble of ∆T S (TS difference, defined as
HR TS minus LR TS; a & b) and ∆PI (similar to ∆T S, but
for PI; c & d) in the historical simulation (1950-2014) of the
four PRIMAVERA models with different ocean model res-
olution (HadGEM3-GC3.1, ECMWF-IFS, CNRM-CM6-1,
and EC-Earth3P; a & c), and two PRIMAVERA mod-
els with the exact ocean model resolution (CMCC-CM2-
(V)HR4, and MPI-ESM1.2; b & d). Fields in all models
are regridded to 2.5◦×2.5◦ to make ensembles.

FIG. 2. Long-term means of (left) HR and (right) HR mi-
nus LR (HR-LR) for (a), (b) PI; (c), (d) LNB; (e), (f) outflow
temperature (t0) in historical run (1950-2005) in storm
season. Contours in panel b represent PI=50 m/s, and
in panel d, they represent LNB=500 hPa. The solid lines
correspond to HR, while the dashed lines correspond to
LR.

4. CONCLUSION

1. SST differences in HR and LR simulations sig-
nificantly influence the PI distribution in different ocean
basins. These differences can be attributed to both ab-

FIG. 3. Long-term means of (left) HR and (right) HR mi-
nus LR (HR-LR) for (a), (b) absolute SST; (c), (d) RSST
in historical run (1950-2005) in storm season.

FIG. 4. The linear trends of (a) HR SST, (b) HR PI, (c)
LR SST, (d) LR PI, (e) SST differences between HR and
LR, and (f) PI differences between HR and LR in storm
season during 2006-2100 in CESM 1850-TNST. “100y”
stands for 100 years. Grids with color are significant at
a 95% confidence level. A 1-D Gaussian filter (kernel
size=11, sigma=2) is applied to the time series before lin-
ear regression.

solute SST and relative SST differences in HR and LR
simulations. 2. Simulated PI differences between HR and
LR increase in historical scenario but decrease in future
scenario. 3. Heat potential, variable mixing length, and
Tdy are larger in HR simulation than in LR, indicating TCs
are easier to intensify in HR simulations.
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