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1. INTRODUCTION 

 The Dvorak Technique (DT, Dvorak 1975, 1984) has 
long filled the void of reasonable tropical cyclone (TC) 
intensity (the maximum sustained wind speed) 
estimation. Despite its known shortcomings and 
subjectivity, it has been employed globally and has 
produced a reasonably consistent data record of TC 
intensity for several decades. 

 The “true” TC intensity is unknowable, even in 
storms with extensive reconnaissance coverage. 
Nevertheless, we can arrive at a reasonable estimate for 
technique skill by comparing Dvorak (or any technique) 
classifications to those storm times with recon-influenced 
data. For example, Knaff et al. (2010) determined a root 
mean square error (RMSE) of 10-15 kt when evaluating 
Dvorak classifications to best track fixes made within 2 
hours of a recon flight. 

 Over the last two decades, significant progress has 
been made in both improving the technique and 
augmenting its estimates with other sources. For 
example, the Advanced Dvorak Technique (ADT, 
Orlander and Velden 2007) and its machine learning 
cousin (AiDT, Orlander et al. 2021) have eliminated the 
subjectivity of the DT and lowered RMSE errors.  

 The rise of artificial intelligence (AI) and specifically 
neural network (NN) applications in science has 
engendered new avenues of research in TC estimation. 
Several of these (e.g., Chen et al. 2019; Fu et al. 2024) 
use multiple satellite channels and report RMSE values 
on the order of 8-10 kt - notably lower than DT/ADT and 
comparable to AiDT. 

 However, there are shortcomings to approaches 
that use multiple channels and/or human identification of 
relevant TC features. First, multi-channel techniques may 
not be transferrable to an operational setting since all 
channels will not be available at any given analysis time. 
Second, any technique that relies on humans to extract 
relevant features of a TC image (e.g., ADT, AiDT) will not 
be able to replicate the efficiency and efficacy of a neural 
network.   

 Convolutional neural networks (CNNs) are the most 
popular  means  of  image  classification.  CNNs  identify  
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relevant features in an image – an obvious example 
would be a TC eye – and over several layers optimizes 
(“convolves”) the influence of those features on the 
classification. 

 Orlander et al. (2021) argue that CNNs are not 
practical to use in TC intensity estimation because: they 
are generally poor at generalization, require large 
amounts of training data, and have high computational 
costs. All these can be easily overcome; this has been 
demonstrated in recent work by Pradhan et al. (2018) and 
others. These studies showed that a CNN trained 
exclusively on IR images can yield skillful classifications 
with minimal investment. Once a CNN is trained, its 
application to new data is instantaneous. 

 Here we present a machine-learning algorithm to 
classify TC intensity that updates and improves upon the 
IR-exclusive work mentioned above. The algorithm 
employs both a CNN for image classification and a feed 
forward back propagation (FFBP) NN to include 
additional information into the system. The data and 
methods will be presented next, followed by the NN 
architectures and training. Results of the experiment are 
provided in Section 5. 

2. DATA AND METHODS 

 The quantity and quality of the image data is critical 
to the success of the CNN classification. Generally, CNNs 
require large amounts of data to better “learn” features 
and increase generalization as well as classification skill. 
Furthermore, it is desirable to have a classifier with global 
scope, so that classifications can be made for any TC 
basin. 

2.1 HURSAT B1 Data 

 The HURSAT B1 v07 dataset (Knapp and Kossin 
2007) satisfies these criteria. HURSAT is a global 
collection of geostationary channels that corrects for 
intersatellite differences. Its long data record (1978-2023) 
and storm-centric geolocation are other features that 
make HURSAT an ideal dataset for this kind of study. One 
potentially challenging aspect is the relatively coarse (8 
km) image resolution, which is necessary to include 
imagery from earlier eras but may likely degrade the 
ability of the CNN to identify relevant features. 

 Images were generated directly from the HURSAT 
“IRWIN” (IR) data for storms the met the following criteria: 
maximum sustained winds >= 23.5 kt, located over water, 
and located in the tropics (defined as equatorward  of  a  



 

Figure 1. HURSAT B1 image of Hurricane Isabel (2003). 

selected latitude which varies by basin). Outlines of land 
masses as well as latitude/longitude lines are excluded 
as they may confuse the classifier. The final images are 
color enhanced (“rainbow”) with a size of 224x224 pixels, 
corresponding to a scene of approximately 700 km 
across. An example of an image is shown in Figure 1. 

2.2 Data Preparation 

 Several image processing steps were executed in 
preparation for training. First, all southern hemisphere 
storms were flipped to mimic northern hemisphere 
circulations. Next, the images were quality controlled to 
remove bad renderings and storms that were obviously 
not in the center part of the image. Finally, the images 
were grouped into twenty categories, with each category 
representing a 5 kt bin of maximum sustained wind 
(“Windspd” variable in HURSAT). The categories ranged 
from 25 kt to 120+ kt. All storm times with winds higher 
than 120 kt were grouped into the last bin since there 
were not enough images to classify them into their own 
category. Figure 2 shows the distribution of images by  

 

Figure 2. Number of HURSAT images by wind category. 

category. As expected, lower wind speed categories 
contain significantly more images than higher wind 
speeds – and thus are theoretically easier to classify. 

 Finally, images were prepared for CNN training. To 
provide more classification and generalization power, 
each unique image was rotated 90°, 180°, and 270°.  

 The final dataset consists of  63,799 unique storm 
images from all TC basins. After rotation, 255,196 images 
were presented to the CNN. During CNN training, 
additional randomized rotations and zooms were 
employed to further enhance learning. The imagery was 
randomly divided into training (80%) and validation (20%) 
datasets prior to training. 

2.3 Independent Test Datasets 

 Two groups of imagery were intentionally held out 
of the training process to be used as an independent test 
of classification skill: Extended Best Track (v1.0, 1,738 
images) and the 2023 global TC year (4,461 images). 
The extended best track data includes all North Atlantic 
TC times that were influenced by reconnaissance 
surveillance, defined as ±12 hours from the image time. 

3. NEURAL NETWORK ARCHITECTURES 

3.1 Convolutional Neural Network 

 The CNN used in this experiment was designed 
from scratch but mimics other standard configurations for 
image classification. Figure 3 shows a diagram of the 
architecture, which contains 43 layers and nearly 20 
million learnable parameters (weights and biases). 
Convolution layers are sometimes followed by “Pooling” 
layers, which reduce the dimensionality of the previous 
layer(s) while retaining the important features of the layer. 
Here we use “max” pooling, which selects the maximum 
value from the region surveyed by the pooling filter. 

 Following the convolution layers, the network 
finishes an iteration by employing  fully connected, 
dropout, and softmax layers. The fully connected layer 
serves as a bridge between input neurons and the output 
layer by transforming all possible weights and biases 
from all input neurons to every neuron in the output layer. 
The dropout layer randomly “turns off” 15% of the 
neurons with the intention of reducing the tendency of 
CNNs to overfit to the training data. The softmax layer 
transforms the output of the CNN into probabilities of 
belonging to a particular category. Batch normalization 
and ReLU activation layers follow each convolution layer 
(not shown).  

 Typically, a CNN will run through many rounds 
(“epochs”) of weight adjustments to reach a configuration 
with minimum classification error. We ran the CNN for 
128 epochs. 

3.2 Feed Forward Back Propagation    

 After the CNN classifications are complete, further 
refinement of the category predictions are performed by  



 

Figure 3. Layer architecture of the CNN. Batch normalization and ReLU layers follow each convolutional layer. 

considering additional “feature data” (other metadata 
for each image). The feature data are: latitude, 
longitude, julian day, satellite viewing angle, and the 
CNN wind speed classification. A feed forward back 
propagation NN is used to classify the wind speed 
given this additional information. A simple 3-layer 
model with 10 hidden neurons is used with a ReLU 
activation function, softmax output activation, and 
quasi-Newton backpropagation. 

4. NEURAL NETWORK TRAINING 

  The CNN was designed and executed using 
Matlab software. The network was tuned by running 
dozens of training sessions with varying 
hyperparameter configurations on a standard Linux 
workstation running a NVIDIA RTX A4500 graphics 
card with over 7,000 cores. A training session took 
approximately 23 hours to complete. A constant 
learning rate of 0.001 was used in the final 
configuration. The CNN achieved 87% training 
accuracy and 82% validation accuracy. 

5. RESULTS 

  The CNN chooses the classification category 
with the highest output probability. Both test datasets 
(extended best track and the 2023 season, see Section 
2.3) were classified and examined. Figure 4 shows the 
confusion matrix (predicted vs. actual category) of the 
extended best track (top) and 2023 season (bottom). 
The values on the figure represent the normalized 
selections of each category (i.e., 1 = 100% success). 
Note that the extended best track test produced a 
much lower bias (closer to the perfect line) and less 
spread than the 2023 season. This is likely due to the 
training dataset containing images from the same 
storms in the extended best track, just not within 12 

hours of a reconnaissance survey. The 2023 season 
shows an overall low intensity bias, which appears 
consistent across all categories.  

 By using the probabilities of an image belonging 
to each category ‘c’ (PC), we can determine the RMSE 
and bias for each test dataset by first calculating the 
wind speed error (WSE) prediction (kt): 

WSE (kt) =( ∑ (𝑃𝑃𝐶𝐶 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶)𝑐𝑐=20
𝑐𝑐=1  – AWS) * 5kt     (1) 

where PWS = predicted wind speed category and AWS 
= actual wind speed category 

Wind speed errors are summed (for the bias) and 
squared and summed (for the RMSE) for all images in 
the test dataset. The RMSE and bias are then 
calculated as follows: 

RMSE (kt) = �∑ (𝑊𝑊𝑊𝑊𝑊𝑊)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
     (2) 

Bias (kt) = ∑ (𝑊𝑊𝑊𝑊𝑊𝑊)𝑁𝑁
𝑖𝑖=1     (3) 

Where N = number of images in the test dataset. The 
RMSE/Bias for the extended best track (2023 season) 
datasets are 10.68 kt/-2.6 kt (12.76 kt/-4.2 kt). 

 The further refinement of classifications in the 
feed forward neural network reduced the RMSE and 
bias significantly. Table 1 shows the improvement in 
RMSE (~15%) and bias (80-95%) from the addition of 
feature data to the CNN classifications. 

6. DISCUSSION AND CONCLUSION 

 Other efforts to classify TC intensity based on 
satellite imagery have shown various levels of success. 
In general, RMSE values range from 8-15 kt, with multi- 



 

 

Figure 4. Confusion matrices for extended best track 
test (top) and the 2023 global TC season (bottom). 

channel techniques (e.g., AiDT) and consensus 
methods (SATCON) exhibiting the lowest errors (8-9 
kt). But these techniques may not always have the 
required information available to them to make an 
operational decision. 

 When compared to work using a singular IR 
channel for classifications, our RMSE (9-11 kt) and low 
bias are quite favorable. This is quite promising given 
that the IR imagery used here is very coarse in 
resolution (8 km) compared to the other methods. With 
nearly a dozen published techniques showing lower 
RMSE values than the original DT, one must wonder 

whether it is time to move on from the gray-scaled 
imagery of the past and embrace our AI tools. 
Ensemble TC estimation using this, and other 
established techniques already surpass the manual DT 
and the gap will continue to grow. 

 

 Table 1. RMSE and bias scores (kt) for CNN 
classifications and CNN+FFBP classifications. 
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