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CONCLUSIONS: 

 
- SDR can be used as a parameter to infer particles’ axis ratios. It is obtained from ZDR and ρhv 

measurements by a  polarimetric radar in the STAR mode. SDR values estimated from WSR-

88D radar measurements vary in an interval from about -30 dB to approximately -7 dB which 

corresponds to a wide range of axis ratios (i.e., from very large axis ratio a/b ≈10 to almost 

spherical particles with a/b ≈1, see the black and white arrows in Figs. 3 and 4). 

 

- SDR represents a proxy for intrinsic CDR when the phase propagation impacts are effectively 

removed so SDR is immune to changes in the differential phase (CDR strongly depends on 

differential phase). SDR depends on differential attenuation but its impact is weaker than that 

on ZDR (compare ZDR and SDR fields in Fig. 4). 

 

- CDR is measured with radars employing circular polarization. Copolar echoes for such radars 

are usually weak which limits the range of CDR observations. SDR is estimated from  STAR 

linear polarization measurements which have two strong returns in receiving channels. This 

results in longer effective distances for SDR observations than those for CDR.     

 

- SDR exhibits a satisfactory performance in echoes from insects, i.e., for aligned scatterers. 

Insects are optically strong scatterers. Reasonable SDR results for strong aligned scatterers 

(Fig. 7) make application of SDR more confident for ice particles, which are optically soft 

scatterers. 

   

 Theoretical basis for estimations of the axis ratios  

The Circular Depolarization Ratio (CDR) depends upon the axis ratio (b/a) of a particle 

and is relatively weakly affected by its orientation (angles θ and φ in Fig. 1) for lower 

radar elevations. CDR can be used for estimating the axis ratio. CDR is measured by 

radars that employ circular polarization measurement scheme. 

 

The most popular radar polarization scheme now is one with Simultaneous 

Transmission And Reception (STAR) of horizontally and vertically polarized waves. For 

a STAR radar, it is possible to derive a measurable that is a proxy of CDR.       

Fig. 1. Scattering geometry for plate-like 

(a) and columnar (b) particles. Eh and Ev 

are the electric vectors of incidence 

radiation. Angles θ and φ are orientation 

angles of a particle. Angle θ is the true 

canting angle.  

Observational data    

Modeling  

  

CDR can be expressed via elements of the 

amplitude scattering matrix Shh and Svv: 

 

CDR=10log10(<|Shh -Svv|
2> /<|Shh +Svv|

2>)   (1) 

       

CDR in linear units can be expressed as 
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Ehr and Evr are received voltages on the 

horizontal and vertical polarizations, Ph,v 

are corresponding powers, and Rhv is the 

copolar correlation function 

A STAR radar receives voltages which are given by:   
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Substitution Ehr and Evr from eq. (3) into eq. (2) and replacing Re(Rhv) with |Rhv|,  

provides a proxy for intrinsic CDR (hereafter called SDR):   

where Φdp is the scattering medium differential phase, Ψt and  Ψr are the radar 

differential phases upon transmission and reception. 
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By expressing Ph, Pv, and Rhv via polarizabilities αa and αb along the main particle’s 

axes, SDR is expressed as,   

(5)   
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Δα= αb – αa,             J1 = <sin2θ>,      J2 = <sin4θ>.  

where J1 and J2 are depend on the intensity of fluttering σθ; the brackets stand for 

angular averaging. Polarizabilities depend upon b/a and particle complex refractive 

 index that makes it possible to estimate b/a from SDR.  

 SDR in radar echoes from insects  

Fig. 1. Scattering geometry for 

plate 

Fig. 4. Same as in Fig. 3 but the 

data were collected on April 18, 

2013 at 0127Z at an azimuth of 

240o. Note a strong manifestation of 

the propagation effects in the ZDR 

field. The SDR field is almost 

immune to these effects. Regions 

with particles having a/b > 10 are 

indicated with the black arrows. In 

contrast to ZDR field, SDR and Axis 

Ratio fields preserve the vertical 

structure of the thunderstorm. The 

Axis Ratio field was generated from 

the SDR field using Fig.2 results.   

Flying insects are aligned and optically strong scatterers 

in contrast to ice cloud particles. Radar echoes from 

insects are frequently asymmetric. How does SDR 

perform in such a medium?       

Fig. 2. SDR as a function 

of axis ratio b/a for different 

solid ice particles (a) and  

water drops (b) and for 

different fluttering 

magnitudes σθ.   

The Fisher distribution for canting angles θ was used here: 

 

 

 

 where  μ = μ(σθ) is a parameter that depends on the 

canting angle standard deviation σθ, which characterizes 

the flutter intensity of particles. A value of σθ=2o 

corresponds to particles with major dimensions oriented 

mostly in the horizontal plane and σθ=39o corresponds to 

particles that are oriented almost randomly in space. 

It is seen from Fig. 2a that SDR depends upon the 

particle type (plates or columns), the axis ratio,  and 

the magnitude of fluttering σθ.  The main contributor is 

the axis ratio b/a. This is used to estimate b/a from 

SDR calculated from (4) using STAR mode radar 

measurables. For instance, if SDR is -20 dB, then b/a 

is  in an interval from 0.45 to 0.70 (the upper red 

arrows in Fig. 2a) for any particle type and fluttering 

magnitude. If SDR values are less than -20 dB, this 

uncertainty is smaller: for SDR = -25 dB, the interval 

is 0.65 < b/a < 0.80 (the lower red arrows in Fig. 2a), 

which is a good estimate for the axis ratio. For SDR = 

-15 dB, the corresponding axis ratio interval is         

0.2 < b/a < 0.5.  
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SDR is immune to  ΦDP in contrast to CDR. ZDR is 

affected by differential attenuation Adp. The impact 

of Adp on SDR is much smaller compared to ZDR 

because Adp enters in the nominator and 

denominator of eq. (4). Thus the propagation 

effects should be less pronounced in SDR fields 

than in ZDR fields. This fact is demonstrated using  

observational data (Fig. 4).  
.  

Fig. 3. (left top): Vertical cross-

section of reflectivity observed on 14 

July, 2013 at 1542Z  at an azimuth of 

180o (left right, low left, and low right 

frames correspond to ZDR, SDR, and 

Axis Ratio (b/a) fields. The Axis Ratio 

field was generated from the SDR 

field using eq. (5). Note areas with 

particles having a/b > 10; the areas 

are shown with black arrows. Note 

also areas of a/b about 1 shown with 

the white arrows (the left lower corner 

of the Axis Ratio panel). So SDR 

indicates particle axis ratios varying 

in a wide interval.  

 

Fig. 5. (left top): The reflectivity field 

observed with WSR-88D KWLX located in 

Sterling, VA. The data were collected on 

07/07/2012 1208Z at an elevation of 3.7o. 

(top right, bottom left, and bottom right): 

Same as in the left top panel but for the 

radial Dopppler velocity, ZDR, and ΦDP.        

Fig. 6. (a): The azimuthal 

dependence of ZDR  (the blue 

curve) for the central ring in the 

outer echo layer in Fig. 5. The 

green line is the model results 

based on eq. (3). (b): Same as in 

(a) but for the differential phase.        

Fig. 7. Values of SDR 

obtained from radar data 

(blue line) and modeled data 

(green curve). A 

discrepancy at an azimuth 

near 200o  is from ground 

clutter contamination .       

The performance of SDR in radar echoes from insects 

provides further evidence of the SDR utility for oriented 

scatterers. 
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