OBSERVATIONS OF A SEVERE HAIL-BEARING STORM BY AN OPERATIONAL X-BAND POLARIMETRIC RADAR IN THE MEDITERRANEAN AREA Gianfranco Vulpiani¹ and Luca Baldini²

- ¹ Department of Civil Protection (DPC), Presidency of the Council of Ministers, Rome, Italy
- ² Institute of Atmospheric Sciences and Climate (ISAC), National Research Council, Rome, Italy

The context

Italian National Weather Radar Network

D

Installed at the Catania airport

- a) gap filler within
 the national radar
 network
- b) Etna Volcano ash monitoring

- "Federated network"
- Radar run from different organization
- DPC is responsible of country level products
- 4 transportable X-band dual-pol radar radar systems

Catania X-band radar scan strategy

12 PPI sweeps and verticalincidence
Scan frequency:
10 minutes
Scan duration:
5 min

- Z_{DR} calibration using observations at vertical incidence
- Removal of non meteorological echoes
- Differential phase processing through a 2-km moving window applied within a threefold iteration scheme
- > A 2-step Bayesian hydrometeor classification approach is applied.
 - 1) a preliminary attenuation correction is performed assuming a $\gamma_{H,DP}$.
 - 2) Classification is performed
 - 3) An optimized coefficient is found
- Rainfall estimation using combination of R(Z) and R(K_{DP})

Vulpiani, G., M. Montopoli, L. Delli Passeri, A. Gioia, P. Giordano and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor and Clim., vol. 51, N. 2, 405-425.

More on attenuation correction. Two methods are applied for comparison

- a) Correction based on fixed linear relations between K_{dp} and specific attenuation and differential attenuation; $\gamma_{H_{c}} = 0.25 \text{ dB/deg } \gamma_{DP} 0.033 \text{ dB/deg}$
- b) A procedure optimizing $\gamma_{H,DP}$ with respect to classified hydrometeors
 - 1. A preliminary attenuation correction is performed assuming a $\gamma_{H,DP}$ constant.
 - 2. The temperature profile (T), retrieved from the closest available radio sounding, is used to roughly discriminate rain from frozen particles;
 - 3. The corrected $Z_{H,DR}$ are then used with K_{DP} , ρ_{HV} and T for hydrometeor classification; values of $\gamma_{H,DP}$ are associated to each class as derived from scattering simulations (Vulpiani et al. 2008);
 - 4. at each range distance *r* an optimal $\gamma^{opt}_{H,DP}(r)$ is computed
 - 5. Correction to $Z_{H,DR}$ is finally applied

Within a context with many experiments on Xband dual pol radars ongoing

- Start evaluating the effectiveness of X-band dualpol radar systems and processing techniques for severe storm monitoring
 - Radar polarimetric signatures for Hydrometeor Classification
 - X-band dual-pol Quantitative Precipitation Estimation
 - Start performing evaluation of the system and review processing with significant case studies

- On the Feb. 21st 2013 a severe storm hit central-eastern Sicily (Italy) flash-flooding the town of Catania (close to the radar site)
- "Bomba d'acqua su Catania" (Cloudburst over Catania); Hail was also reported

From: http://www.cataniatoday.it/foto/nubifragio-a-catania-21-febbraio-2013/

SFLOC (Last 3 hours) (panel e)

Rain gauge located in Catania

- 60 mm in between 15:00 and 16:00 UTC
- about 70 mm in 1 and half hour.
- nearby Raingauges did not record > 20 mm in 3 hours.
- 2-m temperature between 10.4 (1530 UTC) and 13.5 (till 1500 UTC) in Catania

FLH ranging between 1.8 and
 2.1 km

VMI of Z at 15:00 UTC

RHIs at 1530 UTC, azim. 48 (deg) + range plots at 8 deg of antenna elevation

c) RHI(RHO_{LIV}) at 48 deg - Event of 2013/02/21 at 1530 UTC

RHI(PHI_{DP}) at 48 deg - Event of 2013/02/21 at 1530 UTC

d)

Comparison with 26 raingauges within the radar coverage area

		<3>	σ_{ϵ}	RMSE	FSE	Bias
	R _z	-1.62	2.12	2.65	0.64	0.61
	R _K	-0.36	2.64	2.63	0.64	0.91
1	R _C	-0.81	2.16	2.28	0.55	0.80

 $\begin{aligned} < & \epsilon > = < R_{\rm R} - R_{\rm G} > \\ & \sigma_{\epsilon} = (<(R_{\rm R} - R_{\rm G})^2 >)^{1/2} \\ & {\rm Bias} = < R_{\rm R} > / < R_{\rm G} > \\ & {\rm FSE} = {\rm RMSE} / < R_{\rm G} > \end{aligned}$

- This work has documented severe precipitation event causing the flash flood of Catania on the 21st of February 2013 using observations from an operational dual-pol X-band radar
- In addition to the 60 mm of rainfall registered in 1 hour (and about 70 mm in 1 and ½ hour), hail was reported for that event
- HCS is able to confirm the presence of melting hail justifying the huge differential phase shift observed in very short path length
- Attenuation techniques are applied within a HCS. However, correction of differential attenuation is critical especially in conditions determining signal extinction
- Concerning rainfall estimation, a comparison with nearby raingauges shows that the use of K_{dp} or a combination of Z_h and K_{dp} determine resonably accurate precipitation estimates