¹Hans-Ertel-Centre for Weather Research, Atmospheric Dynamics and Predictability Branch, University of Bonn, Germany ²Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma ³National Center for Atmospheric Research, Boulder, Colorado, US ⁴Meteorological Institute, University of Bonn, Germany

Introduction and motivation

- The practical utilization of the backscatter differential phase δ , a tell sign for Mie scatterers, is not well explored yet.
- δ bears important information about the dominant size of raindrops and wet snowflakes in the melting layer.
- The magnitude of δ can be utilized as an important calibration parameter for improving microphysical models of the melting layer.
- Thus, analyses of δ , together with horizontal reflectivity Z_{H} , differential reflectivity Z_{DR} and cross-correlation coefficient ρ_{hv} within the melting layer measured at X band in Germany and at S band in U.S. have been performed to further explore its informative content for microphysics studies.

Moderate δ at X Band observed in Germany

480 snapshots for 13 different storms observed with the polarimetric X-band radars in Bonn (BoXPol) and Jülich (JuXPol) have been analyzed.

Fig.1 : Relative heights in Z_{DR} , ρ_{HV} , and δ in the melting layer observed with BoXPol and JuxPol. Fig.3 : PPIs of ZH, Z_{DR} , ρ_{HV} observed with BoXPol on December 4, 2011, 21:41UTC at elevation 8.1°.

Fig.2: Correlations between anomalies in the melting layer observed on 4 December 2011 from the 7° elevation angle PPI taken by the BoXPol polarimetric radar in Bonn.

Results

The measurements of backscatter differential phase δ in the melting layer at X and S bands

Silke Trömel¹, Alexander V. Ryzhkov², Matthew R. Kumjian^{2, 3}, Pengfei Zhang², Clemens Simmer⁴

- at high antenna elvations ($>7^\circ$).
- averaging is more efficient at higher elevations. \checkmark NBF effects are smaller at higher elevations.
- Trömel et al. (2013).

Observations of dendritic growth

Backscatter differential phase δ within the ML is a reliably measurable parameter which exhibits high variability. Contrary to expectation, much higher δ has been observed at S band compared to X band (Fig.4,5). > Maximal $\delta(X$ -band) = 8.5°, whereas maximal $\delta(S$ -band) = 40.° Part of this can be attributed to climate difference between the U.S. and Germany.

> Theoretical simulations which assume spheroidal shape of melting snowflakes in the absence of aggregation within the ML yield much lower values of δ than observed in the experiments, especially at S band. • As expected, correlation between δ and ΔZ_{H} in the ML is not significant because δ does not depend on particle concentration.

Strong correlation between δ and $\Delta \rho_{HV}$ is observed in only one case (4 December 2011, see Fig. 2), which is in contrast with expectations.

The height level of δ maximum is generally below the phv minimum and the Z_{DR} maximum, whereas the relation to the Z_{H} maximum is not as clear. This is in full agreement with polarimetric theory of the melting layer (Fig.1). Larger δ should be associated with larger size aggregates above the ML. No correlation between δ and the depth of the cloud identified so far. However, some link may exist between the appearance of the zone of intense dendritic growth aloft and δ within the ML (see Fig.3).

The δ signature definitely contains very important microphysical information which has to be further explored.

Hans-Ertel-Centre for Weather Research Atmospheric Dynamics and Predictability Branch – www.herz-tb1.uni-bonn.de

Estimating backscatter differential phase δ in the melting layer (ML)

• Measured total differential phase Φ_{DP} routinely exhibits characteristic "bumps" within the ML which may be associated with either δ or with nonuniform beam filling (NBF). Estimating δ in the melting layer requires azimuthal averaging of radial profiles of Φ_{DP}

 \checkmark At higher elevations the forward propagation contribution to the differential phase is reduced leading to increasingly "clean" δ without contamination from K_{DP}. Azimuthal

 \succ The method which provides reliable estimates of δ in the ML was first introduced by

Huge δ at S band observed in the US

The data for 7 storms observed with the WSR-88D Sband radars in the US were analyzed. All days show well pronounced δ ranging from 18 to 40°.

Fig. 4: PPIs and quasi-vertical profiles of Z_{DR} , ρ_{HV} , and δ in the melting layer observed with KJAX radar in Jacksonville, Florida, at 9.9° elevation on 26 June 2012.

Fig. 5: PPIs and quasi-vertical profiles of Z_{DR} , ρ_{HV} , and δ in the melting layer observed with KCLE radar in Cleveland, Ohio, at 10° elevation on 8 September 2012.

