Introduction and motivation

• The practical utilization of the backscatter differential phase δ, a tell sign for Mie scatterers, is not well explored yet.

• δ bears important information about the dominant size of raindrops and wet snowflakes in the melting layer.

• The magnitude of δ can be utilized as an important calibration parameter for improving microphysical models of the melting layer.

• Thus, analyses of δ, together with horizontal reflectivity Z_H, differential reflectivity ΔDR, and cross-correlation coefficient ρ_{HV} within the melting layer measured at X band in Germany and at S band in U.S. have been performed to further explore its informative content for microphysics studies.

Moderate δ at X Band observed in Germany

480 snapshots for 13 different storms observed with the polarimetric X-band radars in Bonn (BoXPol) and Jülich (JuXPol) have been analyzed.

Observations of dendritic growth

Results

• Backscatter differential phase δ within the ML is a reliably measurable parameter which exhibits high variability.

• Contrary to expectation, much higher δ has been observed at S band compared to X band (Fig.4,5).

• Theoretical simulations which assume spheroidal shape of melting snowflakes in the absence of aggregation δ_{ML} within the ML yield much lower values of δ than observed in the experiments, especially at S band.

• As expected, correlation between δ and ΔZ_H in the ML is not significant because δ does not depend on particle concentration.

• Strong correlation between δ and ΔZ_H is observed in only one case (4 December 2011, see Fig. 2), which is in contrast with expectations.

• The height level of δ maximum is generally below the ρ_{HV} minimum and the Z_{DR} maximum, whereas the relation to the Z_H maximum is not as clear. This is in full agreement with polarimetric theory of the melting layer (Fig.1).

• Larger δ should be associated with larger size aggregates above the ML. No correlation between δ and the depth of the cloud identified so far. However, some link may exist between the appearance of the zone of intense dendritic growth aloft and δ within the ML (see Fig.3).

• The δ signature definitely contains very important microphysical information which has to be further explored.

Huge δ at S band observed in the US

The data for 7 storms observed with the WSR-88D S-band radars in the US were analyzed. All days show well pronounced δ ranging from 18 to 40°.

Fig. 2: Correlations between anomalies in the melting layer observed on 4 December 2011 from the 7° elevation angle PPI taken by the BoXPol polarimetric radar in Bonn.

Fig. 1: Relative heights in Z_{DR}, ρ_{HV}, and δ in the melting layer observed with BoXPol and JuXPol.

Fig. 3: PPIs of ZH, Z_{DR}, ρ_{HV} observed with BoXPol on December 4, 2011, 21:41UTC at elevation 4.1°.

Fig. 4: PPIs and quasi-vertical profiles of Z_{DR}, ρ_{HV}, and δ in the melting layer observed with KJAX radar in Jacksonville, Florida, at 9.5° elevation on 26 June 2012.

Fig. 5: PPIs and quasi-vertical profiles of Z_{DR}, ρ_{HV}, and δ in the melting layer observed with KCLE radar in Cleveland, Ohio, at 10° elevation on 8 September 2012.