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1. Summary of key findings: 4. Empirical modification of Gans theory

« Want to accurately predict dual polarisation radar parameters for hexagonal ice crystals « Results for spheroids were qualitatively OK, but quantitatively inaccurate

« Discrete dipole approximation calculations show that modelling hexagonal crystals as « Suggests it might be possible to modify Gans approximation. Let’s assume that the
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spheroids can give errors up to 1.5dB in differential reflectivity Zn, polarisability tensor has the same form X, = but with different shape

« Empirical modification of Gans theory allows very accurate prediction of scattering from functions L,

hexagonal crystals using simple analytical formulae - Invert this equation and use DDA data to determine L;, and fit a simple function to the data.

« Complex branched and dendritic crystals can be captured using the same formula and a

Assume asymptotic limits are same as spheroid for thin plates and long neeclles
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« Dual polarisation radar is a powerful tool to probe oriented ice crystals 2r

» Plug these functions into the Gans 18 DN AT
formula and compare to DDA data
« Inthe Rayleigh limit (crystal size «< wavelength) we just need to calculate the HoiNnts

« Need an accurate scattering model for quantitative interpretation.

“polarisability tensor” X which relates the dipole moment Pinduced in the ice crystal to « RMS differences < 1% =very

0 = 47 XE, accurate approximation W XgandX, " N DDAdata

the applied electric field E, :

« Simple modification, easily [
| modlﬂed Ganstheory

Then the co-polar radar cross section is then simply mplemented in existing programs | S U
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where E represents the polarisation of the . IR S s R
radar pulse, and k is the wavenumber « No numerical problems at w="1 10? 10" 10° 10' 10°
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The problem is we don’t know what X is for ice crystals — usually we approximate them as

spheroids instead. For a spheroid Gans (1912) determined the polarisability tensor exactly 5. More Complex branched Crystals

If we choose our coordinate system so that the principal axes are parallel to x, y, z then X

Vv w_ © -1 Vis the volume of the particle
dr L(e-1)+1 ¢ is the permittivity of ice

« Theshape functions L; are dimensionless and depend on aspect ratio:

« We can now calculate radar parameters for simple hexagonal prisms - but real crystals are

is diagonal with elements X .. = often more complicated than this. Logical next step is branched [ dendritic crystals
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« New set of DDA
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« We frequently apply these formulae to hexagonal crystals - but is that a good

approximation? « Question: could we approximate these complex particles as enclosing hexagonal prisms
with a reduced permittivity?
3. DDA Calcu IatIOnS « Use standard Maxwell-Garnett mixing theory to obtain the effective permittivity - depends
« |used the discrete dipole approximation (DDA) to calculate X for hexagonal crystals, and on volume fraction of ice in the enclosing hexagon
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« Good qualitative agreement. What about guantitatively?

6. Conclusions

« Modelling hexagonal crystals as spheroids can lead to significant errors in dual-pol radar

« Example for 3:1 plate - dipole moment is 12% too weak along minor (z) axis and 5% too

strong on major (x,y) axes — sounds acceptable.

» Butradar cross-section o, is proportional to X2.. So for horizontal orientation oy, is 25% parameters, especially Zpp

too small, oy is 10% too big, so Z,,, is overestimated by 40% (1.5dB). Not very accurate! « Asimple modification of Gans theory allows hexagonal prism crystal scattering to be

S accurately capured. Polarisability tensor approach allows you to determine scattering for

= (Consider horizontally oriented plate crystals. Let’s plot the error

1.4 any incident polarisation, co/cross-polar, in any scattering direction easily

in Zpr from approximating them as a spheroid vs aspect ratio —>
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= Maxerror = 1.5dB at aspect ratio of 3 Branched planar crystals and dendrites can be accurately simulated by an enclosing

* FError>1dB for aspect ratios <10 hexagonal prism with a reduced permittivity via Maxwell-Garnett mixture theory

= Agreement is better as aspect ratio becomes more extreme

Difference in ZDR (spheroid - hexagonal crystal) [dB]

= Equivalent calculation for columns shows that spheroids work 06 7. For more dEtaiIS... preprint; tinyurl.comlhexradar
better for columns than for plates: differences are <0.5dB 04 , ,
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