Geometric Interpretation of Dual-Polarization Radar Meteorological Observations

Paul Krehbiel
New Mexico Tech
Socorro, NM
Richard ('Chip') Scott
National Radio Astronomy Observatory
Socorro, NM

AMS Radar Meteorology Conference
Breckenridge, CO
September 16-20, 2013

Main Points

- The polarization state of radar signals is completely specified by power values, in particular the Stokes parameters I,Q,U,V.
- Two basic classes of scatterers exist based on the symmetries of their scattering:
i) oriented or alignable, and ii) randomly oriented or shaped.
- The Poincare sphere provides a valuable

(See Conference paper 12A.5 for details)

Basic Scattering Classes

Horizontally Aligned/Oriented

- Changes symmetric about Q (H,V) axis.
- Best described in spherical coordinate system ($2 \alpha, \phi, p$).
- Effects of Zdr/DA, $\phi_{-} d p / \delta$, and ρ_{-}hv are in orthogonal directions for equal \mathbf{H}, V powers (simultaneous transmissions).

Randomly Oriented/Shaped

- Changes symmetric about $\mathrm{V}(\mathrm{L}, \mathrm{R})$ axis.
- Best described in ($2 \delta, 2 \tau, \mathrm{p}$) coordinates.
- Affects degree of polarization p = I_p/I, and makes polarization more linear.
- Change in p twice as great for circular than for linear incident polarization.
- NEED TO KNOW transmitted polarization state to interpret data.

Polarization Trajectories: Mixed rain and hail

Polarization Trajectories: Electrically aligned ice particles

Horizontally Oriented (Rain)

Electrically Aligned (ice xtals)

LHC transmitted polarization
Radial changes due to unpolarized component (not shown)

Non-Horizontal Alignment/Orientation

Angle τ from Horizontal

Random orientation around H

- Determine polarization effects from coordinate rotations of basic horizontal alignment effects to new axis of symmetry.
- Superimpose effects of multiple alignment directions (green dots).
- No need to go back to scattering matrix approach - purely geometric analyses.

Effects of unpolarized component: Covariance calculations

$$
\begin{aligned}
& \hat{E}_{1}=E_{1} e^{j \phi_{1}}+\hat{E}_{\mathrm{u} 1}(t) \\
& \hat{E}_{2}=E_{2} e^{j \phi_{2}}+\hat{E}_{\mathrm{u} 2}(t)
\end{aligned}
$$

a) Reflected signals: Polarized and unpolarized components

b) Covariances and cross-covariances

$$
\begin{aligned}
W_{1} & =\left\langle\hat{E}_{1} \hat{E}_{1}^{*}\right\rangle=E_{1}^{2}+E_{\mathrm{u}}^{2} \\
W_{2} & =\left\langle\hat{E}_{2} \hat{E}_{2}^{*}\right\rangle=E_{2}^{2}+E_{\mathrm{u}}^{2} \\
W & =\left\langle\hat{E}_{1} \hat{E}_{2}^{*}\right\rangle=E_{1} E_{2} e^{j\left(\phi_{1}-\phi_{2}\right)}=|W| e^{j \phi} .
\end{aligned}
$$

$$
J=\left[\begin{array}{cc}
W_{1} & W \\
W^{*} & W_{2}
\end{array}\right]
$$

Effects of unpolarized component:

 Decomposition of coherency matrix into polarized and unpolarized components$$
J=\left[\begin{array}{cc}
W_{1} & W \\
W^{*} & W_{2}
\end{array}\right]=\frac{\text { unpolarized }}{\left[\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right]+\left[\begin{array}{cc}
B & D \\
D^{*} & C
\end{array}\right] .}
$$

Solve for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$:

$$
(1,2)=(H, V) \text { Basis }
$$

$$
\begin{aligned}
& 2 A=\left(W_{1}+W_{2}\right)-\sqrt{\left.\left(W_{1}-W_{2}\right)^{2}+4|W|^{2}\right)} \\
& \mathbf{I} \\
& 2 B=\left(W_{1}-W_{2}\right)+\sqrt{\left.\left(W_{1}-W_{2}\right)^{2}+4|W|^{2}\right)} \\
& +\mathbf{Q} \\
& 2 C=\left(W_{2}-W_{1}\right)+\sqrt{\left.\left(W_{1}-W_{2}\right)^{2}+4|W|^{2}\right)} \\
& D=W . \quad-\mathbf{Q} \\
& \text { Radical is } \mathbf{B}+\mathbf{C}=\mathbf{I} _\mathbf{p}: \\
& B+C=\sqrt{\left(W_{1}-W_{2}\right)^{2}+4|W|^{2}}=I_{p} .
\end{aligned}
$$

$$
\begin{aligned}
& 2 A=\mathrm{I}-\mathrm{I}_{p}=\mathrm{I}(1-p) \\
& 2 B=\mathrm{I}_{p}+\mathrm{Q} \\
& 2 C=\mathrm{I}_{p}-\mathrm{Q}
\end{aligned}
$$

Unchanged:

$$
D=|W| e^{j \phi}=\rho_{H V} e^{j \phi}
$$

Effects of unpolarized component: Z_dr determination

Usual way: Incorrect/biased by unpolarized power A

$$
J=\left[\begin{array}{cc}
W_{1} & W \\
W^{*} & W_{2}
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right]+\left[\begin{array}{cc}
B & D \\
D^{*} & C
\end{array}\right]
$$

$$
\begin{aligned}
& 2 A=\mathrm{I}-\mathrm{I}_{p}=\mathrm{I}(1-p) \\
& 2 B=\mathrm{I}_{p}+\mathrm{Q} \\
& 2 C=\mathrm{I}_{p}-\mathrm{Q}
\end{aligned}
$$

$$
D=|W| e^{j \phi}=\rho_{H V} e^{j \phi}
$$

$$
\widehat{Z}_{\mathrm{DR}}=\frac{W_{H}}{W_{V}}=\frac{B+A}{C+A}=\frac{\mathrm{I}+\mathrm{Q}}{\mathrm{I}-\mathrm{Q}}
$$

Correct way: Involves polarized powers only

$$
Z_{\mathrm{DR}}=\frac{B}{C}=\frac{\mathrm{I}_{p}+\mathrm{Q}}{\mathrm{I}_{p}-\mathrm{Q}}
$$

Effects of unpolarized component:

Z_{-}dr determination
$Z_{\mathbf{Z}} \mathrm{h}, \mathrm{Z}_{\mathbf{\prime}} \mathrm{v}$ determination
Usual way: Incorrect/biased by unpolarized power A

$$
J=\left[\begin{array}{cc}
W_{1} & W \\
W^{*} & W_{2}
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right]+\left[\begin{array}{cc}
B & D \\
D^{*} & C
\end{array}\right]
$$

$$
\begin{aligned}
& 2 A=\mathrm{I}-\mathrm{I}_{p}=\mathrm{I}(1-p) \\
& 2 B=\mathrm{I}_{p}+\mathrm{Q} \\
& 2 C=\mathrm{I}_{p}-\mathrm{Q}
\end{aligned}
$$

$$
D=|W| e^{j \phi}=\rho_{H V} e^{j \phi}
$$

$$
\widehat{Z}_{\mathrm{DR}}=\frac{W_{H}}{W_{V}}=\frac{B+A}{C+A}=\frac{\mathrm{I}+\mathrm{Q}}{\mathrm{I}-\mathrm{Q}}
$$

Correct way: Involves polarized powers only (B, C, I_p)

$$
Z_{\mathrm{DR}}=\frac{B}{C}=\frac{\mathrm{I}_{p}+\mathrm{Q}}{\mathrm{I}_{p}-\mathrm{Q}}
$$

Subtract out unpolarized power

$$
\begin{aligned}
k Z_{H} & =W_{H}-\frac{1}{2}\left(\mathrm{I}_{\text {unpolarized }}\right) \\
k Z_{V} & =W_{V}-\frac{1}{2}\left(\mathrm{I}_{\text {unpolarized }}\right) .
\end{aligned}
$$

Effects of unpolarized component:

Difference between Wh/Wv \& B/C

Error in Z_{DR} Determination, $\mathrm{p}=0.8$

Wh/Wv bias ($\mathrm{p}=0.9$):
-0.32 dB for true $\mathrm{Zdr}=3 \mathrm{~dB}$
-0.77 dB for true $\mathrm{Zdr}=\mathbf{6 ~ d B}$
Zdr from B/C: No bias!

Geometric interpretation

$$
Z_{\mathrm{DR}}=\frac{1+\mathrm{Q} / \mathrm{I}_{p}}{1-\mathrm{Q} / \mathrm{I}_{p}}=\frac{1+\cos (2 \alpha)}{1-\cos (2 \alpha)} .
$$

True Zdr: Triangle OPQ (2 α) Wh/Wv: Triangle OP'Q (x)

Summary
 Data processing procedure

a) Calculate Stokes parameters:

$$
\begin{aligned}
\mathrm{I} & =W_{H}+W_{V} \\
\mathrm{Q} & =W_{H}-W_{V} \\
\mathrm{U} & =2\left|W_{H V}\right| \cos \phi_{H V} \\
\mathrm{~V} & =2\left|W_{H V}\right| \sin \phi_{H V} .
\end{aligned}
$$

b) Polarized power and degree of polarization \mathbf{p} :

$$
\begin{aligned}
I_{p} & =\sqrt{\mathrm{Q}^{2}+\mathrm{U}^{2}+\mathrm{V}^{2}} \\
p & =\mathrm{I}_{p} / \mathrm{I}
\end{aligned}
$$

c) Correct calculations for $\mathbf{Z h}, \mathbf{Z v}$, and $\mathbf{Z d r}$:

$$
\begin{aligned}
k Z_{H} & =W_{H}-\frac{1}{2}\left(\mathrm{I}-\mathrm{I}_{p}\right) \\
k Z_{V} & =W_{V}-\frac{1}{2}\left(\mathrm{I}-\mathrm{I}_{p}\right), \\
Z_{\mathrm{DR}} & =\frac{\mathrm{I}_{p}+\mathrm{Q}}{\mathrm{I}_{p}-\mathrm{Q}}
\end{aligned}
$$

d) ρ_{-}hv and ϕ are correct as is:

$$
\begin{aligned}
\rho_{H V} & =\left|W_{H V}\right| \\
\phi & =\phi_{H V} .
\end{aligned}
$$

- No biases for simultaneous transmit/receive.
- Need to know transmitted polarization to best interpret data.
- Presentation will be available at http://lightning.nmt.edu/radar.

End

