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Main Points
•The polarization state of radar signals is 

completely specified by power values, in 
particular the Stokes parameters I,Q,U,V. 

•  Two basic classes of scatterers exist based 
on the symmetries of their scattering:          
i) oriented or alignable, and ii) randomly 
oriented or shaped.

•  The Poincare sphere provides a valuable 
means for visualizing and understanding 
the various polarization effects and how to 
analyze them.

•  Meteorological radar signals have an un-
polarized as well as a polarized component.

•  It is important to properly account for the 
unpolarized component in interpreting 
observations.
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corresponding to the north and south poles, and linear po-
larization of different orientations being located around the
equator of the sphere.

A simple way of understanding the Poincaré description
is to consider examples of purely polarized radiation. For
horizontally polarized radiation, WV = 0, W+ = W−, and
WL = WR, so that [Q, U, V] = [WH, 0, 0]. This corresponds
to the point on the equator where the +Q axis emerges
from the front of the sphere. A vertically polarized signal
would lie on the −Q axis at the back side of the sphere.
Similarly, left- and right-circular polarizations would lie at
the north and south poles, respectively, while ±45◦ linear
polarizations would lie on the equator on the right and left
sides of the sphere.

An alternative way of characterizing the polarization
state (and the way one actually obtains measurements) is to
pass the radiation through a single set of orthogonal polar-
izing filters (e.g., H and V , or LHC and RHC) and measure
the powers W1 and W2 at the output of each filter as well
as the magnitude |W | and phase φ of the correlation be-
tween the two outputs. Hence the term dual-polarization.
At microwave frequencies, the polarizing ‘filters’ are con-
tained in the orthomode transducer that separates out the
orthogonal electric field components at the antenna feed.
The separated polarization components, after being con-
verted to a voltage, amplified, and down-converted to a
lower frequency, could in principle be displayed on an x-y
oscilloscope to trace out the polarization pattern from a
given volume of scatterers in range. An equivalent, more
practical approach is to record the Stokes-related power
and correlation values, W1, W2, |W | and φ. Mathemati-
cally, W1 and W2 are the covariances of the two signals and
the complex correlation Ŵ = |W |ejφ is their covariance. In
terms of the incident electric fields,

W1 = 〈Ê1Ê
∗
1 〉 = |E1|2

W2 = 〈Ê2Ê
∗
2 〉 = |E2|2 (2)

Ŵ = 〈Ê1Ê
∗
2 〉 = |W |ejφ ,

where Ê1 and Ê2 are the complex amplitudes (i.e., the
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Fig. 1. Poincaré sphere and Stokes coordinate system, showing the
location of the principal polarization states. The radius of the
sphere is Ip, corresponding to the total polarized power.

amplitude and phase) of the two polarization components.
From the covariance variables W1, W2, |W | and φ it is

straightforward and instructive to derive the geometric re-
lations of the Poincaré sphere. This is done in Section
III, beginning with general expressions for the electric field
components. The covariances provide a complete set of in-
formation about the incident radiation and hence about the
polarization state. That covariances determine four quan-
tities reflects the fact that four variables are required to
completely specify the polarization state.

There a number of different ways of representing the po-
larization state, using different sets of variables or coor-
dinate systems. The covariance variables obtained from
scattering matrix formulations (or provided by measure-
ments) provide a starting point, from which other represen-
tations can be obtained by simple transformation relations.
For example, as described in Section III, covariances val-
ues measured in an H–V basis are converted to the Stokes
parameters by the transformation relations

Q = WH − WV

U = 2|WHV| cosφHV

V = 2|WHV| sin φHV (3)

I = (WH + WV) .

Expressed symbolically,

{W1, W2, |W |, φ} ↔ {Q, U, V, I} . (4)

A particularly convenient way of representing the covari-
ance variables is in rationalized form, for example as the
variable set

{

W2,
W1

W2
, ρ =

|W |√
W1W2

, φ

}

. (5)

Other sets of polarization variables are described in Sec-
tion III and summarized in Table II of that section. The
transformations between several sets of variables are fur-
ther developed and summarized in Appendix I and Tables
III and IV of the appendix.
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Fig. 2. Spherical coordinate system {2α, φ, p, I}, corresponding to an
H–V polarization basis in which the Stokes parameter Q is the
polar axis.
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Fig. 7. Geometric representation of the degree of polarization, show-
ing the polarized, Poincaré sphere (inner) and the total power
sphere (outer). The ratio of the two radii is the degree of polar-
ization p.

An unpolarized component is generated when the particles
have a variety of shapes and/or orientations.

E. Sets of polarization variables.

The polarization state is specified by four quantities.
Table II summarizes different ways of doing this.

The polarized part of the signal is characterized by three
quantities. In the basic electric field formulations, these are
the amplitudes and phase difference of the orthogonal com-
ponents, (E1, E2, and φ). In the covariance formulations,
they are the orthogonal power difference (W1 − W2) and
the magnitude |W | and phase φ of the cross-covariance, or
the decomposed quantities (B, C, ! D). In terms of the ra-
tionalized covariances, the three quantities are W1/W2, ρ,
and φ. The polarized part can also be represented geomet-
rically in the three-dimensional Stokes or Poincaré space,
by means of the Cartesian Stokes parameters Q, U, V, or
by the spherical coordinates (δ, τ , p) for a circular basis
and (α, φ, and p) for an H ,V linear basis.

For signals that are fully polarized, the polarization state
can be represented by two quantities (e.g., the spherical
coordinate angles). For the general case, however, the de-
gree of polarization needs to be accounted for. The use of
W/W2 for characterizing circular polarization observations
attempted to represent the polarization state with only two
variables, associated with the magnitude |W | and phase φ
of Ŵ . As discussed later, the resulting characterization was
non-conformal and, even for fully polarized signals, highly
non-linear.

The different sets of variables can be considered as de-
scribing the polarization state in different coordinate sys-
tems, and are therefore related by coordinate transforma-
tions. The transformations between the covariance and
spherical formulations govern the way in which the co-
variance measurements are interpreted geometrically and
are determined in Appendix I. Tables III and IV of the
appendix summarize these and other transformations be-
tween the covariance, Stokes, and spherical representations.

TABLE II

Sets of polarization variables

Electric Field: E1, E2, φ, E 2
u

Covariances: W1, W2, |W |, ! W

Sum/Difference: (W1+W2), (W1−W2), |W |, ! W

Decomposed: A, B, C, D, (or E2
1 , E2

2 , φ, E 2
u )

Rationalized: W2,
W1

W2
, ρ = |W |√

W1W2

, φ = ! W

Cartesian:

Stokes: I, Q, U, V

Spherical:

H/V Linear: I, α, φ, p

L/R Circular: I, δ, τ , p

IV. Effect of Scattering on the Polarization
State.

The preceding section has described different ways of
characterizing or representing the polarization state. We
now address the question of how the polarization state is
altered after being scattering by particles of different types.
To do this, we consider the scattering by two basic types
of particles: a) particles that are oriented or aligned in
a common direction, and b) particles that are randomly
oriented. For the aligned particle case, it suffices to deter-
mine the effect of horizontal orientation on the polarization
state; the effect of non-horizontal orientation is obtained
from a simple rotation in Poincaré space. For the random
orientation case, it is sufficient to consider the situation
in which the particles are oriented in the plane perpen-
dicular to the incidence plane. Spherical particles can be
considered a special case of aligned or random orientation.
The polarization changes produced by mixtures of particle
types and/or orientations is given by the superposition of
the effects of the different types.

The results are discussed in the particular context and
notation of the meteorological problem but are otherwise
generally applicable. In the meteorological context, aero-
dynamic forces cause liquid drops to be flattened into
approximate oblate spheroidal shapes as they fall, effec-
tively orienting the drops horizontally (e.g., Pruppacher
and Klett, 19xx; Bringi and Chandrasekhar, 2001). Align-
ment is also produced by the effect of electric forces on ice
crystals, which orient the crystals in the direction of the
electric field. In thunderstorms, electrical alignment is of-
ten vertical or nearly vertical because this is the dominant
direction of the electric field, but in general the field and
therefore the particle orientation can be in any direction.
Random orientation results from the presence of irregu-
larly shaped solid hydrometeors such as hail, which tumble
as they fall, and from transient drop oscillations following
collisions or from the effects of turbulence.

The manner in which rain and hail alter the polariza-
tion state of the radar signal, both during backscatter and
propagation, has been extensively investigated in the litera-

(See Conference paper 12A.5 for details)
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Basic Scattering Classes

Horizontally Aligned/Oriented Randomly Oriented/Shaped

• Changes symmetric about Q (H,V) axis.
• Best described in spherical coordinate 

system (2α,ϕ,p).
• Effects of Zdr/DA, ϕ_dp/δ, and ρ_hv are 

in orthogonal directions for  equal H,V 
powers (simultaneous transmissions).

• Changes symmetric about V (L,R) axis.
• Best described in (2δ,2τ,p) coordinates.
• Affects degree of polarization p = I_p/I, 

and makes polarization more linear.
• Change in  p  twice as great for circular 

than for linear incident polarization.
• NEED TO KNOW transmitted 

polarization state to interpret data.
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Polarization Trajectories:  Mixed rain and hail
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Polarization Trajectories:  Electrically aligned ice particles
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Horizontally Oriented (Rain) Electrically Aligned (ice xtals)

LHC transmitted polarization
Radial changes due to unpolarized component (not shown)
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Non-Horizontal Alignment/Orientation
Angle  τ  from Horizontal Random orientation around H

•Determine polarization effects from coordinate rotations of basic 
horizontal alignment effects to new axis of symmetry.

•  Superimpose effects of multiple alignment directions (green dots).

•  No need to go back to scattering matrix approach - purely 
geometric analyses.

· · ······· ····
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Effects of  unpolarized component: 
Covariance calculations

a) Reflected signals:  Polarized and 
unpolarized components

b) Covariances and cross-covariances c) Coherency matrix
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Effects of  unpolarized component:  
Decomposition of coherency matrix into polarized 

and unpolarized components

unpolarized polarized
Solve for A,B,C,D:

Radical is B+C  =  I_p:

(1,2) = (H,V) Basis

+I_p-Q

I

+Q

Unchanged:
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Effects of  unpolarized component:  
Z_dr  determination

Usual way:  Incorrect/biased 
by unpolarized power A

Correct way:  Involves polarized 
powers only
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Effects of  unpolarized component:  
Z_dr  determination

Z_h,  Z_v  determination
Usual way:  Incorrect/biased 
by unpolarized power A

Correct way:  Involves polarized 
powers only  (B, C, I_p)

Subtract out unpolarized power
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Effects of  unpolarized component:  

Difference between Wh/Wv  & B/C Geometric interpretation

Wh/Wv bias (p = 0.9):
-0.32 dB for true Zdr = 3 dB 
-0.77 dB for true Zdr = 6 dB

Zdr from B/C:  No bias!
True Zdr:  Triangle OPQ (2α)
Wh/Wv:     Triangle OP’Q   (x)
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Summary
Data processing procedure

a)  Calculate Stokes 
parameters:

b)  Polarized power and 
degree of polarization  p :

c)  Correct calculations 
for Zh, Zv, and Zdr:

d)  ρ_hv and ϕ are 
correct as is:

• No biases for simultaneous transmit/receive.
• Need to know transmitted polarization to best interpret data.
• Presentation will be available at http://lightning.nmt.edu/radar.
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End
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