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236. Aircraft Radar Observations of Convective

Characteristics during a Maden-Julian Oscillation during the
DYNAMO Field Project

| “*"m

: ' 5 'f'.‘,*_ "4 .
‘ 3 - Pty g‘- _ ’.\ ; ‘;:"_i. .""".: ;:‘.,\, ‘:. ‘
- 1 ] @ i o 1 = ‘ 2 N : . '3 ",\"T{& ,* ' o 0
| NOAA National Severe Norman, OK, USA; “Corresponding author er .Guy@noaa.gov
v > e T o L et ) L : [y ' T PSR g M TR L 14
‘ ‘;:; ( . daas _— i : il g . 5 . .“ f-'.; 3 e ‘V}mg‘,‘z e

" 1. Introduction

2. Large-scale case synopsis 4. Convective characteristics frequency distributions

Convective systems displayed similar organization (Fig. 5; largely due to weak vertical wind shear

During DYNAMO, the NOAA P-3 aircraft conducted 12 flights (11 Nov — Three mission flights occurred on convectively active days during the late November MJO

13 Dec 2011). This mobile platform offers the ability to collect in-situ data (Fig. 4). In context of space-time filtered OLR anomaly indices (Fig. 4), the flights could be and cold pools).
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Expanding our understanding of convective dynamic and thermodynamic
structure 1n this region 1s 1mportant to improve modeled MJO
characteristics and forecasts. The DYNAMO field project provided an
unprecedented quantity of small-scale observations in the climatological
MJO 1nitiation region, allowing study of individual convective systems as
well as the convective envelope.
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3. Convective structure

date ——> Figure 7. Contoured frequency-by-altitude diagrams (CFEADs). Solid lines are mean profiles in all plots.
Additionally, 10%, 50, and 90" percentiles are shown for reflectivity distributions.

All events exhibited extensive stratiform precipitation and weakly organized convection on
the mesoscale. While many convective bands were observed, a less linear organization was
evident than previous oceanic field experiments (e.g. TOGA-COARE in the Western Pacific).
Weak cold pools were present near the convectively active portion during the 22 and 24
November cases, with little signal apparent on the 30 November (not shown). Generally
increasing relative humidity was observed as the MJO event progressed. Figure 5 shows the
horizontal and vertical extent of convective systems observed during an RCE flight from the
onset, peak, and decaying stages.

5. Summary

Airborne weather radar data were used to compare characteristics of convective
systems 1n the Indian Ocean occurring during “onset”, “active”, and “decay” stages of
an MJO event.
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1. Horizontal composites of radar reflectivity indicated greater stratiform
precipitation during the active stage, though a great deal of anvil cloud was
observed especially during the decay stage.

2. Convective precipitation systems were found to display similar peak radar
reflectivity values while having varying echo top heights.

3. Echo top height distributions broadened as the MJO strengthened, followed by a
narrowing, consistent with a larger population of systems of varying heights and
supportive of the “building-block hypothesis”.

124 -

0.00 -

Latitude
o
D
|

Latitude
b
Latitude

126

These observations provided measurements to test conceptual models
largely developed from satellite observations and simulations. One such
example 1s the verification of the cloud types within phases of the MJO on
the mesoscale and improved understanding of the cause of the observed
convective characteristics.
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3. Lack of organized mesoscale in- and out-flows 1mply weaker horizontal
momentum transfer.
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Do small-scale observations agree with current conceptual models of
precipitating cloud systems in the MJO?

2. Are there any unique kinematic, and therefore microphysical structure,

apparent in this region and between MJO stages?
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Figure 5. Top panels show radar reflectivity Constant Altitude Plan Position Indicator (CAPPI), overlaid with the
quasi- dual-Doppler derived horizontal wind field and NOAA P-3 flight track (black arrows and line, respectively).
Bottom panels shows the vertical cross-section indicated by the A-B red-white line in the top panel.
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