

Icing Hazard Detection with NEXRAD IHL

Robert G. Hallowell, Michael F. Donovan, David J. Smalley, Betty J. Bennett Massachusetts Institute of Technology, Lincoln Laboratory

Introduction

- In-flight icing hazards are an aviation safety challenge
- Dual polarization NEXRAD provides hydrometeor classification (HCA) and frequent sampling of potential icing regions
- NEXRAD Icing Hazard Levels (IHL) algorithm produces radar-based with model-enhanced icing hazard detection

Hydrometeor Classifications Related to Icing

- Graupel class from HCA indicates supercooled liquid water (SLW) in close proximity and likely somewhat above the altitude of the signature
- Further improvements are needed to account for presence of **SLW** interspersed with primary HCA categories

Hydrometeor Categories Allowed Relative to Melting Layer

Algorithm Description

- Leverages existing NEXRAD products with icing related enhancements
- Creates thermal and icing interest fields based on hourly Rapid Refresh (RAP) model grid
- Melting Layer Detection Algorithm (MLDA) blends thermal grid data with radar melting layer (ML)
- IHL produces top/bottom icing product each volume scan

Improved Integration of Model Fields

Obtaining model grid information over the entire radar coverage area is a necessary first step toward enhancing ML detection

Heights of 0°C Crossings

Temperature and Relative Humidity Interest Maps

Thermal Grid Viewer

Icing Interest Grid Viewer

Blending MLDA with Model Grid Data

- Current methods to define the ML in regions lacking sufficient evidence of wet snow can lead to incorrect diagnoses
- Model enhanced blending in MLDA improves detection of non-uniform melting layers and hydrometeor classification

Build 13

▲ RD RD

Build 14

Build 13

KICT 3/8/2012 12:05 UTC E4.0°

Build 14

Blending Method DM – default model **RD** – radar diagnosed RA – radar averaged

RI – radar interpolated MD - model diagnosed WA – weighted average

Product Description

Graupel near freezing level

1. For each range bin, lowest (highest) beam angle where graupel is found determines altitude of icing bottom (top)

2. Search top-down to identify highest altitude where icing interest ≥0.8

3. Extend graupel based icing top to icing interest altitude

4. Produces a single tilt depiction of the top and bottom of the icing hazard region

Verification

- Surface observations provide clues ice crystals encountered SLW
- In situ measurements and pilot reports (PIREPs) support presence of icing

Conclusions

- NEXRAD IHL provides high spatial/temporal detection of icing within the sensitivity limits of the radar
- Significant enhancements made to the MLDA product and model utility
- Future enhancement to MLDA, HCA, and IHL based on verification studies will extend IHL initial capability to non-graupel icing regions