Determining Geometry for Common Comparison Radar Space

Zlatko R. Vukovic ${ }^{1}$, Jim M.C. Young ${ }^{1}$, Norman Donaldson²
${ }^{1}$ Meteorological Service of Canada, Environment Canada
${ }^{2}$ Science and Technology Branch, Environment Canada

Background:

A condition for the successful inter-radar comparison between two radars is the time-space synchronization in the middle region where the comparison is most effective. In first approximation, a collection of radar beams that overlap in the middle of two radars is represented as a vertical 'wall' with fixed size. How accurate is this analogy?

1. Reference systems:

The 'fixed' geocentric coordinate system (GCS) was chosen as the prime framework with zero coordinates at the centre of the Earth.

2. Common inter-radar space (CIS):

For independent angles (α_{A}, β_{A}) we need to obtain theoretical values of dependant variables (r, α_{B}, β_{B}) that determine coordinates of CIS.

3. Vectorial equations:

$\overrightarrow{O C}=\widehat{O A}+\widehat{A A_{n}}+\widehat{A_{h} C}$ $\overrightarrow{O C}$
 $\overrightarrow{O C}=\overrightarrow{O B}+\overrightarrow{B B_{n}}, \overrightarrow{B_{h} C}$

The position vector of a common target point of two radars relative to the GCS is the composition of the three vectors: a position vector from the geocentric origin to the surface of the oblate geoid at the geographical latitude and longitude of a radar location, an altitude vector that is normal to the oblate spheroid surface at the point of the radar location and which represents the height of the radar antenna above mean sea level, and at third vector is a local position vector of a common target point measured from the radar.

5. Graphical CIS presentation:

Equi-distance from WKR-WSO radars
CIS from WKR and WSO radars in the local WKR reference system

The spatial distribution of CIS points generated width 1 Deg azimuth and elevation resolution presented in local (WKR) radius-azimuth-elevation space (left) and Descartes reference system (right).

4. CIS solution:

Since the two sets of three vectors describe the position of same target with respect to the Earth centre, equating them results in three scalar equations:

$$
\begin{aligned}
& f_{x}\left(\alpha_{B}, \beta_{B}, r_{B}\right)=F_{x}\left(\alpha_{A}, \beta_{A}, r_{A},\right. \\
& \left.\lambda_{A}, \phi_{A}, h_{A}, H_{A}, \lambda_{B}, \phi_{B}, h_{B}, H_{B}\right) \\
& f_{y}\left(\alpha_{B}, \beta_{B}, r_{B}\right)=F_{y}\left(\alpha_{A}, \beta_{A}, r_{A},\right. \\
& \left.\lambda_{A}, \phi_{A}, h_{A}, H_{A}, \lambda_{B}, \phi_{B}, h_{B}, H_{B}\right) \\
& f_{z}\left(\alpha_{B}, \beta_{B}, r_{B}\right)=F_{z}\left(\alpha_{A}, \beta_{A}, r_{A},\right. \\
& \left.\lambda_{A}, \phi_{A}, h_{A}, H_{A}, \lambda_{B}, \phi_{B}, h_{B}, H_{B}\right)
\end{aligned}
$$

For a target point at equal distance from both radars: $r_{A}=r_{B}$
(4)

Using the four scalar equations it is possible to obtain the local azimuth and elevation from the second radar, as well as the equal distance, assuming the geographical coordinates and antenna heights are known:

Parameters and constants:

6. Analyse:

1) The first approximation:
$(L, W, H)=$ const very robust and inaccurate.

2) The second approximation:
$(L, W, H)=f\left(\lambda_{A}, \phi_{A}, h_{A}, H_{A}, \quad \lambda_{B}, \phi_{B}, h_{B}, H_{B}\right)$
much more accurate but not operationally suitable.
3) The third approximation should include the radar characteristics:
$(L, W, H)=f\binom{\lambda_{A}, \phi_{A}, h_{A}$, beamWidth $_{A}$, beamPulse $_{A}}{,\lambda_{B}, \phi_{B}, h_{B}$, beamWidth $_{B}$, beamPulse $_{B}}$ and will be operationally applicable.

Summary:

- Converting coordinates to the geocentric coordinate system is essential for obtaining accurate common inter-radar space (CIS) coordinates
- The CIS coordinates depends on the geographical locations of a radar pair
- The CIS coordinates in the local coordinate system are not necessary in the vertical 'wall' but more often they are in the 'tilted wall'
- Obtained formulas for CIS are very accurate but not operationally suitable since they determine the geometric equidistant points not the common radar pulse volumes; next steps will be the inclusion of the technical characteristics of radars and a conversion of geometric elevation to antenna axis elevation

