Polarimetric Weather Radar Calibration - Engineering Challenges

R. L. Ice, J. G. Cunningham, A. K. Heck

WSR-88D Radar Operations Center
Presenting Today:

- Baseline WSR-88D Zdr Calibration
- Fielded Performance
- ROC Monitoring Program (Cunningham et al)
- Cross Polarization Power (Meymaris)
The Zdr Uncertainty Requirement!

0.1 dB: official requirement

< 0.2 dB: good performance in HCA and QPE

> 0.3 dB: reduced benefit with polarimetric QPE
Zdr Calibration is the “removal” of system induced biases.
Measuring the Biases with built in test equipment (BITE) and solar scans

Receiver bias checked each volume scan

Transmitter bias checked every eight hours (performance check)

Antenna bias checked periodically with a solar scan

the test signal and power sensing equipment biases must be known and corrected
Measuring the Power Sense and Test Signal Bias

This is done with the “Crossed and Straight” calibration

\[G_H \cdot H_{ts} - G_H \cdot V_{ts} = H_{ts} - V_{ts} \]
Data Reported from Installation Teams for 146 Sites

AME Test Signal Bias

Power Sense Calibration Offset Bias

Sun Measurement Reflector Bias
The ROC estimates performance using level 2 data

- weather method uses stratiform precipitation
- sun spike method uses assumption that the sun is un-polarized
- ROC is investigating use of Bragg scatter
- “Methods for Identifying Systematic Differential Reflectivity (Zdr) Biases on the Operational WSR-88D Network” Cunningham et al

The ROC estimates that almost 60% of sites have a Zdr bias error of < 0.2 dB

working with sites when issues are noted

Implementing cross polarization power as an alternate external method
Cross Polarization Power Method - Implementation Challenges

Reciprocity assumption requires the scans revisit the same resolution volumes

The WSR-88D antenna precision and stability lends a challenge to this requirement

Transmit full power to half power ratios must be monitored and corrections applied

Reference:

WSR-88D Pedestal Elevation Stability

Xpol Clutter Power Ratios by Azimuth

Likelihood of an elevation correction
The ROC and NCAR teams are developing data acquisition and censoring techniques to reduce variance and remove artifacts.

Range-azimuth plot of cross pol clutter ratios, WSR-88D

Scatterplots of cross pol clutter ratios, S-Pol (top) WSR-88D (bottom)
Summary of the Engineering Challenges to Zdr Calibration

- Need consistency in BITE induced bias measurements
 - refining technical manuals and training
 - could look at hardware solutions

- Accurate solar scan results
 - possibly affected by pedestal control
 - may implement cross pol solar box scan method
 - some diurnal reflector bias changes observed

- Transmitter power monitoring stability
 - identified by cross pol project
 - may adjust measurement timing

- Cross pol implementation challenges result from differences in the research and operational radars

- The ROC is actively working with sites to identify and correct Zdr calibration performance issues