Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

Larry Carey ${ }^{1}$, Walt Petersen ${ }^{2}$ and Patrick Gatlin³
${ }^{1}$ University of Alabama in Huntsville
${ }^{2}$ NASA GSFC/Wallops Flight Facility
${ }^{3}$ NASA MSFC

Research is funded by Dr. Ramesh Kakar, NASA Precipitation Measurement Mission (PMM), Dr. Arthur Hou, NASA GPM Project Scientist, and Dr. Mathew Schwaller, NASA GPM Project Office

Our $\mathrm{D}_{\text {max }}$ problem

- In radar meteorology, we wish to estimate various (n) moments $\left(\mathrm{p}_{\mathrm{n}}\right)$ of the rain drop size distribution (DSD), N(D)

$$
p_{n}=\int_{0}^{D_{\max }} D^{n} N(D) d D \quad n^{\text {th }} \text { moment of the DSD }
$$

- $\mathrm{D}=$ drop diameter; $\mathrm{D}_{\max }=$ maximum drop diameter
- E.g., $\mathrm{p}_{6}=\mathrm{Z}$, Rayleigh Reflectivity ($6^{\text {th }}$ moment of the DSD)
- Disdrometers are used to measure N(D), calculate various moments of DSD and make relations between them (E.g. Z-R relations, R: rainfall rate)
- Past studies have shown p_{n} is sensitive to choice of $D_{\max }(\sim 10 \%$ bias error not uncommon) (Ulbrich and Atlas 1984; Ulbrich 1985; Ulbrich 1992)
- At resonant frequencies (e.g., C-band), $D_{\max }$ effect is greatly exacerbated
- $D_{\max }$ sampling issues documented in disdrometers (Ulbrich 1992; Smith et al. 1993)
- $D_{\text {max }}$ is under-constrained; a "tunable parameter" in our radar methods
- Observed $D_{\text {max }}$ (DMX); constant ($D_{\max }=5-8 \mathrm{~mm}$); Dmax=X*Do where Do is the median volume diameter and $X=2.0-3.5$

$D_{\text {max }}$ from radar?

- How can we constrain $D_{\max }$?
- Radar has large samples...
- Can we use polarimetric radar observations of horizontal reflectivity $\left(Z_{h}\right)$ or differential reflectivity $\left(Z_{d r}\right)$ to estimate $D_{\max }$?
- $D_{\max }=F\left(Z_{h}\right), D_{\max }=F\left(Z_{d r}\right)$
- E.g., $4^{\text {th }}$ order polynomial (Brandes et al. 2003)
- RMSE: 0.6 to 0.8 mm
- Very large potential bias error associated with $D_{\text {max }}$ assumption
- Brandes et al. (2003) used an arbitrary "D' adjustment" to account for likely 2DVD large drop under-sample

$D_{\text {max }}$ at S-band

Large Drop Concentration

- Can we estimate the concentration of large rain drops using 2DVD and radar?
- If yes, could help assess 2DVD large drop sampling issues
- Then, radar and networks of disdrometers combined might constrain $D_{\max }$
- What do we mean by "large" rain drop? How about D > 5 mm ?
- Also, where strong resonance starts at C-band

Large Drop Concentration ($\mathrm{D}>5 \mathrm{~mm}$)

$$
N T 5(D)=\int_{5 m m}^{D_{\max }} N(D) d D \quad\left[m^{-3}\right] \quad[1]
$$

- Estimate NT5 directly from 2DVD observations of drop size distribution, N(D)
- Strict N(D) bin count; Gamma model fit to N(D)
- How well do 2DVD disdrometers estimate NT5?
- Can we check with polarimetric radar?

Empirical Estimate of NT5 from

Polarimetric Radar

NT5 $\left(z_{h}, Z_{d r}\right)=A *\left(z_{h}\right)^{b} *\left(Z_{d r}\right)^{c}\left[m^{-3}\right][2]$

- $\mathrm{z}_{\mathrm{h}}: \mathrm{mm}^{6} \mathrm{~m}^{-3}, \mathrm{z}_{\mathrm{dr}}: \mathrm{dB}$
- Large ($\mathrm{N}=7678$) training dataset of 2DVD disdrometer observations
- Truncated Method of Moments (TMoM) used to fit 1-minute N(D) observations to Gamma DSD model
- Gamma DSD fits and T-matrix model used to calculate $N T 5, Z_{h}, Z_{\text {dr }}$
- Non-linear least square regression to derive power law relations $\mathrm{NT}_{5}\left(\mathrm{z}_{\mathrm{h}}, \mathrm{z}_{\mathrm{dr}}\right)$
- Obvious question: What is sensitivity to $\mathrm{D}_{\text {max }}$ assumption?
- Vary $\mathrm{D}_{\text {max }}=$ Actual 2DVD (DMX), 2*Do, 2.5*Do, 3*Do, 3.5*Do

NT5 ($\mathrm{z}_{\mathrm{h}}, \mathrm{Z}_{\mathrm{dr}}$) at S-band Sensitivity to $D_{\text {max }}$

NT5 sensitivity to $D_{\text {max }}$

- Postulate a truth for $D_{\max }$ (e.g., 3*Do)
- Calculate true NT5 from Gamma fit $N(D)$ assuming $D_{\max }=3 *$ Do using [1]
- Use T-matrix to calculate ($\mathrm{Z}_{\mathrm{h}}, \mathrm{Z}_{\mathrm{dr}}$) from Gamma fit $N(D)$ for varying $\mathrm{D}_{\text {max }}$ assumptions
- Use power-law fit equations, [2], to estimate $\mathrm{NT} 5\left(\mathrm{z}_{\mathrm{h}}, \mathrm{Z}_{\mathrm{dr}}\right)$ for varying $\mathrm{D}_{\max }$ assumptions
- Compare NT5 truth to empirical fit estimates
- $\mathrm{NT} 5\left(\mathrm{z}_{\mathrm{h}}, \mathrm{Z}_{\mathrm{dr}}\right)$ relatively insensitive to $D_{\text {max }}$; less bias error
- RMSE $=0.30-0.36 \mathrm{~m}^{-3}$

S-band

S-band Example

Height $=0.5 \mathrm{~km}$

May 18, 2011: 0632-0646 UTC (≈ 40 second PPI update rate)
Oklahoma during the Midlatitude Continental Convective Clouds Experiment (MC3E)

SN38: 0646 - 0647 UTC

NPOL

NT5 $=A^{*}\left(z_{h}\right)^{b *}\left(Z_{d r}\right)^{c}$
($\mathrm{D}_{\max }=2 \mathrm{DVD} \mathrm{DMX}$)
Height $=0.5 \mathrm{~km}$

SN38 BIN DATA
$\mathrm{R}=1.2 \mathrm{~mm} \mathrm{~h}^{-1}$
TND $=151$ drops
$Z=27.6 \mathrm{dBZ}$
$\mathrm{M}=0.06 \mathrm{~g} \mathrm{~m}^{-3}$
$\mathrm{D}_{\mathrm{m}}=1.5 \mathrm{~mm}$
$D_{\text {max }}=2.5 \mathrm{~mm}$
NT5 $=0.0 \mathrm{~m}^{-3}$

NT5 at SN38
 NPOL vs. SN38 2DVD

SN36+SN38 Mean/Median NT5

Dmax Assumption	2DVD Eqn. [1]	NPOL Eqn. [2]
Actual 2DVD (DMX)	$0.42 / 0.27$	$0.73 / 0.52$
2*Do	$0.56 / 0.45$	$0.71 / 0.54$
2.5*Do	$0.97 / 0.72$	$0.62 / 0.45$
3*Do	$1.10 / 0.86$	$0.58 / 0.42$
3.5*Do	$1.11 / 0.87$	$0.57 / 0.42$

$D_{\max }=2 *$ Do provides better consistency between NPOL + 2DVD NT5

$\mathrm{D}_{\text {max }}$ impact on $\mathrm{Z}_{\mathrm{h}}, \mathrm{Z}_{\mathrm{dr}}$

Z_{h} at SN38
NPOL vs. SN38 2DVD

Z_{dr} at SN38 NPOL vs. SN38 2DVD

Statistical Characterization of Radar $\mathrm{NT}_{5}\left(\mathrm{z}_{\mathrm{h}}, \mathrm{Z}_{\mathrm{dr}}\right)$

ALL NPOL GATES

Different colors = Eqn. [2] with different $\mathrm{D}_{\text {max }}$ assumption. With large sample (right), little sensitivity of NPOL NT5 $\left(z_{h}, z_{d r}\right)$ relative frequency histogram to $D_{\text {max }}$.

Summary

- $\mathrm{D}_{\text {max }}$ is difficult to observe with disdrometer or radar
- Large raindrop concentration (NT5) [D > 5 mm] is a little easier
- Radar $\mathrm{NT} 5\left(\mathrm{z}_{\mathrm{h}}, \mathrm{Z}_{\mathrm{dr}}\right)$ shows limited sensitivity to $\mathrm{D}_{\text {max }}$ assumptions
- Analyzed 1 MC3E OK case at S-band with large drops from melting hail (Poster 175, Gatlin et al., large sample 2DVD study)
- Smaller $\mathrm{D}_{\text {max }}$ assumptions (e.g., 2*Do) provided better consistency between 2DVD and NPOL estimates of NT5
- Next steps. More, varied cases. Statistical comparison between 2DVD and radar NT5.
- Future considerations. Sensitivity to Gamma model. Optimal 2DVD integration period. Feasibility at C-band. NT5 ($\mathrm{K}_{\mathrm{dp}}, \mathrm{Z}_{\mathrm{dr}}$).

