Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

> Larry Carey¹, Walt Petersen² and Patrick Gatlin³ ¹University of Alabama in Huntsville ²NASA GSFC/Wallops Flight Facility ³NASA MSFC

Research is funded by Dr. Ramesh Kakar, NASA Precipitation Measurement Mission (PMM), Dr. Arthur Hou, NASA GPM Project Scientist, and Dr. Mathew Schwaller, NASA GPM Project Office

Our D_{max} problem

 In radar meteorology, we wish to estimate various (n) moments (p_n) of the rain drop size distribution (DSD), N(D)

$$p_n = \int_0^{D_{\max}} D^n N(D) dD$$

 $n^{th}\,moment$ of the DSD

- D = drop diameter; **D**_{max} = maximum drop diameter
- E.g., $p_6 = Z$, Rayleigh Reflectivity (6th moment of the DSD)
- Disdrometers are used to measure N(D), calculate various moments of DSD and make relations between them (E.g. Z-R relations, R: rainfall rate)
- Past studies have shown p_n is sensitive to choice of D_{max} (~ 10% bias error not uncommon) (Ulbrich and Atlas 1984; Ulbrich 1985; Ulbrich 1992)
- At resonant frequencies (e.g., C-band), D_{max} effect is greatly exacerbated
- D_{max} sampling issues documented in disdrometers (Ulbrich 1992; Smith et al. 1993)
- D_{max} is under-constrained; a "tunable parameter" in our radar methods
 - Observed D_{max} (DMX); constant (D_{max} = 5-8 mm); Dmax=X*Do where Do is the median volume diameter and X=2.0 – 3.5

D_{max} from radar?

- How can we constrain D_{max}?
- Radar has large samples...
- Can we use polarimetric radar observations of horizontal reflectivity (Z_h) or differential reflectivity (Z_{dr}) to estimate D_{max}?
- $D_{max} = F(Z_h), D_{max} = F(Z_{dr})$
 - E.g., 4th order polynomial (Brandes et al. 2003)
- RMSE: 0.6 to 0.8 mm
- Very large potential bias error associated with D_{max} assumption
- Brandes et al. (2003) used an arbitrary "D' adjustment" to account for likely 2DVD large drop under-sample

Large Drop Concentration

- Can we estimate the concentration of large rain drops using 2DVD and radar?
 - If yes, could help assess 2DVD large drop sampling issues
 - Then, radar and networks of disdrometers combined might constrain D_{max}
- What do we mean by "large" rain drop? How about D > 5 mm ?
 - Also, where strong resonance starts at C-band

Large Drop Concentration (D > 5 mm)

$$NT5(D) = \int_{5mm}^{D_{\text{max}}} N(D) dD \quad [m^{-3}] \quad [1]$$

- Estimate NT5 directly from 2DVD observations of drop size distribution, N(D)
 - Strict N(D) bin count; Gamma model fit to N(D)
- How well do 2DVD disdrometers estimate NT5?
- Can we check with polarimetric radar?

NASA Two-dimensional Video Disdrometer (2DVD)

Empirical Estimate of NT5 from Polarimetric Radar

NT5(z_h, Z_{dr}) = A * (z_h)^b * (Z_{dr})^c [m⁻³] [2]

- $z_h: mm^6 m^{-3}, Z_{dr}: dB$
- Large (N=7678) training dataset of 2DVD disdrometer observations
- Truncated Method of Moments (TMoM) used to fit 1-minute N(D) observations to Gamma DSD model
- Gamma DSD fits and T-matrix model used to calculate NT5, Z_h, Z_{dr}
- Non-linear least square regression to derive power law relations NT5(z_h,Z_{dr})
- Obvious question: What is sensitivity to D_{max} assumption?
- Vary D_{max} = Actual 2DVD (DMX), 2*Do, 2.5*Do, 3*Do, 3.5*Do

 $NT_5(z_h, Z_{dr})$ at S-band

NT5 sensitivity to D_{max}

- Postulate a truth for D_{max} (e.g., 3*Do)
- Calculate true NT5 from Gamma fit N(D) assuming D_{max}=3*Do using [1]
- Use T-matrix to calculate (Z_h,Z_{dr}) from Gamma fit N(D) for varying D_{max} assumptions
- Use power-law fit equations, [2], to estimate NT5(z_h,Z_{dr}) for varying D_{max} assumptions
- Compare NT5 truth to empirical fit estimates
- NT5(z_h,Z_{dr}) relatively insensitive to D_{max}; less bias error
- RMSE = 0.30 0.36 m⁻³

S-band

S-band Example

May 18, 2011: 0632- 0646 UTC (≈ 40 second PPI update rate)

Oklahoma during the Midlatitude Continental Convective Clouds Experiment (MC3E)

NT5 at SN38 NPOL vs. SN38 2DVD

D_{max} = 2*D0 provides better consistency between NPOL + 2DVD NT5

 D_{max} impact on Z_h , Z_{dr}

Z_h at SN38 NPOL vs. SN38 2DVD

Statistical Characterization of Radar NT5(z_h , Z_{dr})

Different colors = Eqn. [2] with different D_{max} assumption. With large sample (right), little sensitivity of NPOL NT5(z_h , Z_{dr}) relative frequency histogram to D_{max} .

Summary

- D_{max} is difficult to observe with disdrometer or radar
- Large raindrop concentration (NT5) [D > 5 mm] is a little easier
- Radar NT5(z_h , Z_{dr}) shows limited sensitivity to D_{max} assumptions
- Analyzed 1 MC3E OK case at S-band with large drops from melting hail (Poster 175, Gatlin et al., large sample 2DVD study)
- Smaller D_{max} assumptions (e.g., 2*D0) provided better consistency between 2DVD and NPOL estimates of NT5
- Next steps. More, varied cases. Statistical comparison between 2DVD and radar NT5.
- Future considerations. Sensitivity to Gamma model. Optimal 2DVD integration period. Feasibility at C-band. NT5(K_{dp}, Z_{dr}).