PROCEDURE: Based on Lee and Zawadzki (2006), Journal of Hydrology, p. 83-97.

- **RUC-2** forecasts provide initial indication of the 0° C isotherm height. No analysis is performed if < 2 km.
- A 5-point smoother is applied to the Φ_{DP} and Z_H measurements.
- **Polarimetric info used to omit any path with non-liquid precipitation.**
- Measured and theoretical Φ_{DP} differences are deduced for all rain paths > 20 km.
- Theoretical Φ_{DP} is derived from $Z_H = 5.7 \ge 10^4 K_{DP}^{1.075}$ (Brandes et al. 2005)
- A path along a given azimuth can contribute only one $(\Phi_{DP-meas}, \Phi_{DP-theor})$ pair.
- A path may be composed of more than one segment.
- Rain paths are taken over 4 elevation angles (0.5°, 0.9°, 1.4° and 2.2°) and along azimuths free of ground echoes and/or shadows and at heights at least 0.5 km above ground and 0.5 km below the bright band.
- -Unlike Lee and Zawadzki (2006) who only considered $\Phi_{DP-theor} > 3^{\circ}$, all paths are kept regardless of the intensity, allowing its application to cases of light precipitation. $\Phi_{DP-meas}$ differences may be negative in light precipitation due to significant noise caused by our fast scanning (6 rpm) radar antenna but are not rejected.
- Data from any 5-min radar cycle with fewer than 50 paths (selectable) are rejected.
- Data from cycles where the $(\Phi_{\text{DP-meas}}, \Phi_{\text{DP-theor}})$ correlation $\gamma < 0.4$ are rejected.
- -The accepted 5-min pairs are combined to produce a daily estimate at 1200 UTC.
- Calibration correction ε (to be added) is derived from the slope *m* of the least-square fit: $\varepsilon = 10b\log_{10}(m)$ where b=1.075, the exponent of the $Z_H - K_{DP}$ relationship used.
- The inclusion of a sufficiently large number (~10³) of ($\Phi_{DP-meas}, \Phi_{DP-theor}$) pairs inevitably leads to a reliable estimate of the calibration.

OBSERVATIONS and CONCLUSIONS:

-Polarimetric calibration with the selected Z_H - K_{DP} relationship can be used for light and moderate stratiform precipitation if based on a sufficiently large number of paths ($\sim 10^3$).

-The assumed Z_H - K_{DP} relationship fails in heavy precipitation, in particular, when the average Z_{DR} over the path exceeds 2 dB.

-One of the Z_H - K_{DP} - Z_{DR} relationships proposed by Vivekanandan et al. (2003), K_{DP} =3.32x10⁻⁵ $Z_H Z_{DR}^{-2.05}$ has been shown to overcome the limitation of the two-parameter relationship but any inconsistency found between the power and phase measurements cannot be attributed to only Z_{H} but to a combination of Z_H and of Z_{DR} .

Acknowledgement: This project was undertaken with the financial support of the Government of Canada provided through the Department of the Environment.

J. S. Marshall Radar Observatory, McGill University, Montreal

Distributions of observed K_{DP} vs observed Z_{H} for all paths within the indicated Z_{DR} interval, normalized to 100% at the (K_{DP}, Z_{H}) pair of greatest occurrence. The grey pixels through the distribution represent the selected $Z_H - K_{DP}$ relationship. K_{DP} is overestimated at high Z_{DR} .

Scatter plots of $\Phi_{DP-meas}$ vs $\Phi_{DP-theor}$ differences obtained with the $Z_{H}-K_{DP}-Z_{DR}$ relationship derived by Vivekanandan et al. (2003) for the same 3-month data set stratified by the average Z_{DR} over the path. Φ_{DP} differences are better predicted for all ranges of Z_{DR} .