

Radar-based rainfall nowcasting at European scale

long-term evaluation and performance assessment

Marc Berenguer, Daniel Sempere-Torres

OPERA radar mosaic:

Precipitation
 observations over
 Europe @2 km and
 every 15 minutes.

OPERA radar mosaic:

- Precipitation
 observations over
 Europe @2 km and
 every 15 minutes.
- Operationally produced since mid 2011.

OPERA radar mosaic:

- Precipitation
 observations over
 Europe @2 km and
 every 15 minutes.
- Operationally produced since mid 2011.

OPERA radar mosaic The European NEXRAD?

The European NEXRAD?

Many C-band radars.

- Many C-band radars.
- OPERA network is extremely heterogeneous:

- Many C-band radars.
- OPERA network is extremely heterogeneous:
 - -installation date,

- Many C-band radars.
- OPERA network is extremely heterogeneous:
 - -installation date,
 - -manufacturers,

- Many C-band radars.
- OPERA network is extremely heterogeneous:
 - -installation date,
 - -manufacturers,
 - -scanning strategy,

- Many C-band radars.
- OPERA network is extremely heterogeneous:
 - -installation date,
 - -manufacturers,
 - -scanning strategy,
 - -signal processing and QC,

- Many C-band radars.
- OPERA network is extremely heterogeneous:
 - -installation date,
 - -manufacturers,
 - -scanning strategy,
 - -signal processing and QC,
 - -and product generation.

- Many C-band radars.
- OPERA network is extremely heterogeneous:
 - -installation date,
 - -manufacturers,
 - -scanning strategy,
 - -signal processing and QC,
 - -and product generation.
- OPERA radar density is about twice that of NEXRAD.

- Many C-band radars.
- OPERA network is extremely heterogeneous:
 - -installation date,
 - -manufacturers,
 - -scanning strategy,
 - -signal processing and QC,
 - -and product generation.
- •OPERA radar density is about twice that of NEXRAD.

Frequency of rain (dBZ > 10 dBZ)

in the period 01 June - 30 June 2013

The HAREN project

The goal:

Demonstrate the interest of *rainfall*nowcasting based on OPERA mosaics for hazard assessment.

Very short-term forecasting by extrapolation of radar observations.

Very short-term forecasting by extrapolation of radar observations.

I.Tracking: The motion field of rainfall is estimated from observations.

Very short-term forecasting by extrapolation of radar observations.

I.Tracking: The motion field of rainfall is estimated from observations.

Very short-term forecasting by extrapolation of radar observations.

I.Tracking: The motion field of rainfall is estimated from observations.

Very short-term forecasting by extrapolation of radar observations.

- I.Tracking: The motion field of rainfall is estimated from observations.
- 2.Extrapolation: Of the most recent rainfall field.

Very short-term forecasting by extrapolation of radar observations.

- I.Tracking: The motion field of rainfall is estimated from observations.
- **2.Extrapolation:** Of the most recent rainfall field.

How does it work?

-performance of nowcasting-

Dbservations 13 July 2012 21:45 UTC

Forecasts

Observed

Forecasted

Evolution of the life time in the period 01 June - 31 July 2012

Lifetime mostly between 4 and 10 h

Evolution of the life time in the period 01 June - 31 July 2012

Lifetime mostly between 4 and 10 h

Evolution of the life time in the period 01 June - 31 July 2012

Lifetime mostly between 4 and 10 h

Mean Lifetime in the period 01 June - 31 July 2012

Mean Lifetime in the period 01 June - 31 July 2012

Mean Lifetime in the period 01 June - 31 July 2012

Case #1: 13 June 2012 1200 UTC

nowcasts up to 8 hours

Case #2: 25 June 2012 0715 UTC

nowcasts up to 8 hours

Geographical variability (Lifetime)

in the period 01 June - 31 July 2012

Long-term evaluation in the period 01 June - 31 May 2013

Long-term evaluation in the period 01 June - 31 May 2013

Long-term evaluation in the period 01 June - 31 May 2013

When is nowcasting useful?

-comparison with NWP outputs-

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

01 June 2013 - 48 hour evaluation

•Continental nowcasts benefit from the better capturing of motion at large scale and upstream coverage.

- Continental nowcasts benefit from the better capturing of motion at large scale and upstream coverage.
- Nowcasting shows average lifetime ~5 hours. Very similar to the results obtained over the NEXRAD mosaic.

- Continental nowcasts benefit from the better capturing of motion at large scale and upstream coverage.
- Nowcasting shows average lifetime ~5 hours. Very similar to the results obtained over the NEXRAD mosaic.
- Time and space variability:

- Continental nowcasts benefit from the better capturing of motion at large scale and upstream coverage.
- Nowcasting shows average lifetime ~5 hours. Very similar to the results obtained over the NEXRAD mosaic.
- Time and space variability:
 - Large scale systems are more predictable.

- Continental nowcasts benefit from the better capturing of motion at large scale and upstream coverage.
- Nowcasting shows average lifetime ~5 hours. Very similar to the results obtained over the NEXRAD mosaic.
- Time and space variability:
 - Large scale systems are more predictable.
 - ▶ Better skill in the areas with more frequent precipitation.

- Continental nowcasts benefit from the better capturing of motion at large scale and upstream coverage.
- Nowcasting shows average lifetime ~5 hours. Very similar to the results obtained over the NEXRAD mosaic.
- Time and space variability:
 - Large scale systems are more predictable.
 - ▶ Better skill in the areas with more frequent precipitation.
- •First comparisons against operational NWP show cross-over times ~4-5 hours.

Radar-based rainfall nowcasting at European scale long-term evaluation and performance assessment

Spring 2008 over North-America

From: Berenguer et al. (MWR2012)

OU Storm-Scale Ensemble Forecast (10 members).

- WRF-based with perturbed configurations.
- 4-km grid.
- 9 members with 3D-var assimilation of reflectivity and Doppler velocity.