Reconstruction of radar reflectivity in clutter areas

Shinju Park(*) and Marc Berenguer - Centre of Applied Research in Hydrometeorology, Universitat Politècnica de Catalunya, Barcelona (Spain).

Introduction

The production of Radar Quantitative Precipitation Estimates (QPE) requires processing the observations to ensure their quality and its conversion into the variable of interest (e.g., precipitation rates).

In this study, raw radar have been process to mitigate the effect of beam blockage using the Some of the steps involve the reconstruction of the meteorological signal in areas where the signal is algorithm of Delrieu et al. (1995). Areas affected by clutter have been identified with the fuzzy logic lost (e.g. due to total beam blockage or severe path attenuation by heavy rain) or strongly algorithm of Berenguer et al. (2006). contaminated, for instance, in areas affected by ground or sea clutter. For uncorrected moment data, the reconstruction needs (1) the identification of clutter-affected areas, and (2) the reconstruction of the meteorological signal.

Here, an alternative reconstruction method is proposed using the space and time structure of the field in the reconstruction.

The methodology

The reconstruction is done by linear combination of non-contaminated values:Z(

Under the ordinary kriging formulation, the reconstruction weights are the solution of the linear equation system:	$\left[\begin{array}{c} \gamma \\ \gamma \end{array}\right]$	$\stackrel{\prime}{:}$	• • •	$\gamma_{1n}\ dots\ \gamma_{nn}\ 1$	1 : 1 0	$\begin{bmatrix} \lambda \\ \vdots \\ \lambda \\ \xi \end{bmatrix}$
The semivariogram						
It measures the field variability and has been γ estimated locally around the areas to be	ij	=	$\gamma\left(riangle ight)$	(ij)		
reconstructed.		=	$\frac{1}{2}Vc$	$nr\left[Z ight)$	(\mathbf{x}) –	$-Z(\mathbf{x})$
		\approx	$\frac{1}{2N_{ij}}$	$\sum_{i=1}^{N_{ij}} \left[A_{ij} \right]$	$Z\left(\mathbf{x}_{p}\right)$	c) - d
Implementation aspects						

The developed methodology is based on combining 3 reconstruction methods:

Horizontal interpolation

The signal in the contaminated area is reconstructed by interpolating the clutter-free bins on the same PPI.

Time extrapolation

The contaminated bin is replaced with the non-contaminated measurement from the previous scan [considering the motion of the precipitation field as estimated with the tracking algorithm of Berenguer et al. (2011)].

Analyzed configurations

HOR: horizontal interpolation. **VER**: Vertical extrapolation. **TIM**: Time extrapolation. **HV**: Horizontal interp. + Vertical extrapolation. **HT**: Horizontal interp. + time extrapolation.

Vertical extrapolation

The contaminated bins are replaced with the value from the closest non-contaminated observation in the vertical

Reference technique (Sánchez-Diezma et al., 2001) ____

Sánchez-Diezma et al. (2001) proposed to use either horizontal interpolation or vertical extrapolation based on a pre-classification of the type of preciptiation.

extrrapolation interpolation

(*) Current affiliation: Dept. Astronomy & Atmospheric Sicences, Kyungpook National University, Daegu (South Korea).

$$\mathbf{x} = \sum_{i=1}^{n} \lambda_i Z(\mathbf{x}_i)$$

$$\mathbf{x}_1 = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_n \\ 1 \end{bmatrix}$$

$$\mathbf{x} + \Delta_{ij})]$$
$$Z \left(\mathbf{x}_k + \Delta_{ij}\right)]^2$$

Study area

The algorithm has been implemented as a part of the chain of correction algorithms applied to the measurements of the Corbera de Llobregat C-band radar (5.4 cm) of the Spanish Agency of Meteorology.

> 125 rain gauges of the Catalan Water Agency have been used in the validation of the methodology.

Results

Reconstruction

The weather signal is reconstructed over the mean clutter pattern but rotated to a clutter-free area. The original measurements are used as reference.

	19 July 2001					08 October 2002						
	HOR	VERT	TIM	ΗV	HT	SD2001	HOR	VERT	TIM	ΗV	HT	SD2001
Bias [mm]	0.03	-3.15	0.19	-0.23	0.03	-0.09	0.28	-0.27	-0.26	0.04	0.28	-0.05
MAE [mm]	1.39	4.57	1.62	1.42	1.46	1.33	1.21	0.79	1.43	0.75	1.19	0.96
MRAE [%]	17.2	40.6	26.1	15.7	17.2	15.5	130.2	51,5	72.9	66.2	127.9	67.8
corr	0.96	0.78	0.90	0.95	0.96	0.96	0.79	0.91	0.61	0.90	0.79	0.84

Method: HV

Method: VER1

G-R comparison

Comparison of radar rainfall estimates with collocated raingauges. The orange squares indicate the raingauges located in areas affected by ground clutter in mean propagation conditions.

Event #1: 19 July 2001

Conclusions

- estimated locally.

Acknowledgements: This work has been done in the framework of the project of Spanish Ministry of Science and Innovation ProFEWS (CGL2010-15892). The second author is supported by a Ramón y Cajal grant of the Spanish Ministry of Science and Innovation (RYC2010-06521). Thanks are also due to the Spanish Meteorological Agency (AEMET) for providing radar data and to the Catalana Water Agency (ACA) for rain gauge observations.

References

Amer. Meteor. Soc., 271-273.

• We have developed a method for the reconstruction of radar observations using non-contaminated observations in the horizontal, in the vertical and/or from the previous time step.

• The method adapts to the weather situation through the use of the semi-variogram, which is

• The method based on the use of 3-D observations (HV) is the one that showed the best performance in two significantly different situations. Contrarily, HOR showed the worst performance in the convective situation, and VER is not useful in widespread events.

• On the other hand, the methods that use information from the previous times steps (HT and TIM) showed an intermediate performance for both cases, and past information did not seem to have a major contribution to the reconstruction.

Berenguer, M., D. Sempere-Torres, C. Corral, a and R. Sánchez-Diezma, 2006: A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. Journal of Atmospheric and Oceanic Technology, 23, 1157-1180.

Delrieu, G., J. D. Creutin, and H. Andrieu, 1995: Simulation of Radar Mountain Returns Using a Digitized Terrain Model. *Journal* of Atmospheric and Oceanic Technology, **12**, 1038-1049.

Sánchez-Diezma, R., D. Sempere-Torres, J.-D. Creutin, I. Zawadzki, and G. Delrieu, 2001: An improved methodology for ground clutter substitution based on a pre-classification of precipitaion types. 30th Int.Conf. on Radar Meteorology, Munich, Germany,