

The Problem

Mobile and transportable radars are increasingly in use for observa field experiments. These radars can be quickly moved to regions o sometimes even operated while in motion. Not all mobile radars are automatic systems for platform leveling. Additionally, limited options selection and preparation can result in a shift of the platform during

During DYNAMO, SMART-R (the Shared Mobile Atmospheric Rese Teaching Radar) experienced off-level issues while operating on a largely surrounded by water (Fliegel, 2011). During post-field analy DYNAMO radar community also found a SMART-R elevation angle

Possible Approaches

 <u>Off-level</u> problems found in azimuthally dependent echo top heigh • Elevation bias found via statistical comparison of echo tops and or echo tops are echo tops and or echo tops and or echo tops are echo tops and or echo tops are ech comparison of shallow echoes between SMART-R and nearby S-P

Above methods require information from another radar or long-terr project data. Neither approach has the potential to provide an accu history of change in the off-level or an accurate determination of ele and whether the bias was constant with elevation.

Careful analysis of bright band has the potential to overcome these

Analysis can be performed on a single scan volume. For constant e scanning, the bright band appears as a circle of high reflectivity, wit centered on the radar (this assumes that there is no actual tilt to the melting level). As the radar elevation angle increases, the apparent the circle decreases. If the radar platform is off-level, the bright ban slightly elliptical, and the ellipse is no longer centered on the radar.

An Example

Data are first smoothed, then windowed, and a polynomial fitted to the i Note that the smeared beams to the NW are an artifact caused by a bla

SMART-R during DYNAMO: A Technique to Diagnose Elevation Angle Errors

Robert A. Rilling and Courtney Schumacher National Center for Atmospheric Research /

	Procedure	
ations during of interest, and re fitted with as for site g operation. Search and a sandy spit, ysis, the e bias.	 Periods of circular November, 24 Octa BB height carefully Reflectivity data fo SMART-R data sm Polynomial fit mad the gate of maximute Using the azimuth the S-Pol determinangles to the BB w Original, uncorrect angles, and a true 	bright band (BB) ober, and 21 Dec vestimated using r high (>11°) SMA oothed using a 5 e to reflectivity da um reflectivity dat ally-dependent ra- ied (or an estima- vere found ed elevation ang correction to the
	Last step assumes the f	ollowing error eq
	Eerror = Eapparent –	Eoriginal = b1
hts direct Pol	E is an elevation a b1 is the amplitude b2 is the direction b3 is the elevation	ngle • of the off-level a of maximum off-level • bias
m integration of urate time-	Analysis (for 23-No	ov-2011)
levation bias	DYNAMO SMART-R Bright Ban	d Gate locations @2011-11-23T16:26
e limitations.		
elevation angle ith that circle		
ne atmospheric		
nd becomes		^{#####################################}
-		200 250
	·	zimuth, degrees
remaining data. anked sector.		om BB range w/ neight = 4600m @2011-1
YNOMIAL FIT	22	
23T16:26:01Z fa = 15.0	B B B B B B B B B B B B B B B B B B B	
	B B B B B B B B B B B B B B B B B B B	
20 25 30	u 50 100 150 A	∠υυ 250 zimuth, degrees

Texas A & M University

at high elevation tilts were found (23 cember 2011 were best cases) nearby S-Pol RHI scans 1ART-R PPI scans windowed for BB 5x5 (azimuth x range) median filter lata through the BB for each radial, and etermined as a function of azimuth ange to the center of the BB, along with ated) BB height, apparent elevation

gles compared to apparent elevation original elevation angle computed

quation applies for each elevation scan:

 $* \cos(azimuth - b2) + b3$

angle level

Gate locations of BB as determined from smoothed and fitted reflectivity data. Scans used range from 11 to 24 degrees elevation.

Apparent elevation angle of BB, determined from BB range (previous plot) and known or approximated BB height. The lighter, smoothed line shows the line of best fit after outliers are removed.

Best-fit Information (BB Analysis for 20111123 ~16:34Z)

for bb_height = 4700 m			for bb_height = 4600m					
	b1	b2	b3			b1	b2	b3
11.2 deg	0.8709	295.0518	1.2802		11.2 deg	0.8558	294.8698	1.4945
12.4 deg	0.8455	289.5133	1.2881		12.4 deg	0.8270	289.5095	1.5259
13.6 deg	0.8205	288.7979	1.3508		13.6 deg	0.8022	288.7967	1.6146
15.0 deg	0.9352	291.9410	1.3136		15.0 deg	0.9142	291.9444	1.6086
16.6 deg	0.8295	293.9027	1.1703		16.6 deg	0.8107	293.9040	1.5053
18.3 deg	0.8892	287.2169	1.2145		18.3 deg	0.8683	287.1575	1.5879
20.1 deg	0.9263	282.3572	1.0958		20.1 deg	0.9044	282.3622	1.5136
22.2 deg	0.8017	288.6839	1.1158		22.2 deg	0.7820	288.6845	1.5839
24.4 deg	0.8177	286.8654	1.0706		24.4 deg	0.7726	287.6103	1.5777
std_dev	.049		.103		std_dev	.051		.047
All dea	0.8566	289.5471	1.2122		All dea	0.8359	289.4705	1.5574

Conclusions

Analysis of three cases produces the following aggregate equation:

Fliegel equation of:

It is furthermore concluded that the elevation bias does not change with a change in elevation angle. There is insufficient evidence to firmly conclude that the correction coefficients changed over the course of the deployment.

Recent physical measurements of the SMART-R mounting configuration closely confirm the size of the elevation bias (C. Schumacher and class, Texas A&M University, 7/2013)

A Note on Reflectivity Calibration of SMART-R

Initial reflectivity comparisons to TRMM PR and nearby S-Pol showed that SMART-R was "running hot" by 8 dB. Since we have concluded that SMART-R was pointing high by 1.5°, another reflectivity comparison must be performed. Initial, unpublished results by the authors indicate that the original 8 dB correction should only be approximately 4 dB (this work will be continued).

Acknowledgments

Many individuals contributed directly and indirectly to this work. We'd particularly like to thank our funding agencies, the US National Science Foundation and the Japan Agency for Marine-Earth Science and Technology. Any opinions, findings, conclusions, or recommendations are those of the authors, and do not necessarily reflect the views of the sponsoring agencies.

References

Fliegel, J.M., 2011: Quality control and census of SMART-R observations from the DYNAMO/CINDY2011 field campaign. Thesis, Office of Graduate Studies of Texas A&M University.

Contact Info: R.A. Rill C. Schur

The analysis for BB height = 4600 m shows the smallest standard deviation in b3, and is therefore considered the better estimate.

- Ecorrected = Eorig [0.78 * cos(azimuth 283) + 1.5]
- With the exception of the bias term, this compares extremely closely to the original
 - Ecorrected = Eorig $[0.75 * \cos(azimuth 285)]$

lling,	rilling@ucar.edu	AMS 36 th Conference on Radar Meteorology,
macher,	cschu@tamu.edu	16-20 September 2013, Breckenridge, CO