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« Platforms participating in the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX?2) * All EnKF analyses produce an internal RFD ~25ms” »
(Wurman et al. 2012) observed a series of four internal rear-flank downdraft (RFD) momentum surges over a 15-minute momentum surge at a similar time and location as -~
period from 2250 — 2305 UTC (Figs. 1, 2). Independent observations (Fig. 4) (Skinner et al. < g
 RFD surges were found to coincide with the development and decay of a low-level mesocyclone (Fig. 2) and qualitatively 2013). Ny §
appear to be driven by a downward-directed vertical perturbation pressure gradient force (VPPGF) (Skinner et al. 2013). « RFD and RFD surge perturbations of density potential oL =
* |n order to undertake a quantitative analysis of RFD surge forcing and origin, a series of data assimilation experiments temperature in ZVD experiments are most similar to o
using an ensemble Kalman filter (EnKF) have been performed. observations of the Dumas supercell (Welss et al. :

2012; Skinner et al. 2013) (Fig. 4).

. Hiah f ind d behind Figure 7. Color-coded location of a material circuit initialized at 2300 UTC at an altitude of 0.467 km
MethOdOIOgy g est near-surtace win SPEEAs occur benin within the RFD surge at five different times. The viewing perspectives are from the (a) southwest at e 595800 9300:00
leading edge of RFD surge GF and cyclonic low-level an elevation angle of 0° and (b) south-southwest at an elevation angle of 20°. Ensemble mean T T T T T 0467 km 258 T 7 0467 km
. - - - P : : : Isosurfaces of 40 dBZ simulated reflectivity and 0.02 s-! vertical vorticity are plotted in gray and
Ensemble =l r_OOt filter used with NCOMMAS numencal m(_)de" _ _ ety maXImum_ occurs at the mtersectlop of the orange, respectively, and 2300 UTC wind vectors at 0.05 km are underlain in (b). The vertical axis
 Homogeneous environment based on VORTEX2 mobile sounding (NSSL 2 in Fig. 1). RFD surge and primary RFD gust fronts (Fig. 4). has been stretched by a factor of 4 for clarity. o
‘w4 * Ensemble of 48 members run on a 100 x 100 x 20 km domain with 500 m horizontal  Retrieved pressure and EnKF ensemble mean M 1 Ci . lvsi =
U1 Truka- grid spacing and a stretched vertical grid with 80 levels (100 — 700 m spacing. microphysical analyses used to calculate terms in the aterial Circuit Ana YS1S 5
-~ @ MWR:05XP  sMART-R 1 " . . . = - . I 1 . i i . i ] é
powrlcama @ Three microphysical parameterizations were employed to account for uncertainty in the vertical momentum equation: . 10000 backward trajectories comprising a circular, 1-km radius

\ near-surface thermodynamic environment. Results from the Ziegler variable density

(ZVD) sch W Il et al 2010) ted h material circuit centered over the RFD surge at 2300 UTC are
scheme (Mansell et a are presented here.

calculated over a 10-minute period (Figs. 7, 8).
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\ L1V e— R?Idlal_ v_elo(;:lty cflata frﬁm DOW-7 and SMART-R 1_ ag,l WeIC: as radial velc_)cny ar;d radar o he TR . Trajectories are calculated using a 1-s time step and fourth order
e 1 Looations of select VORTEXD sosets <Y T ¢ mcceloration al . Runge-Kutta method with linear interpolation in time and trilinear Figure 8. Horizontal location of the material circuit at (a) 2254, (b) 2256, (<) 2258,
at 2300 UTC SMART-R 0.8° elevation angle 2220 - 2308 UTC (Flg- 3)- * Upward acceleration along RFD surge GF due to interpolation Ta space. and (d) 2300 UTC. Wind speed contours, wind vectors, and reflectivity contour as in
' . . . - iecti - ' ' - ' : : Lk : . : Fig. 4 and plotted at a height of 0.467 km. Location of material circuit at five ti
radar reflectivity at 2257:13 UTC is overlain. DOW and SMART R data are objectively analyzed to a 1-km grid using a two pass VPPGEF (Fig. 5). | . All trajectories within the material circuit reside near the surface A :ginp(g) > r?eierfllgoogth trajectc;?y Loaon Ol
The star in the inset denotes the approximate Barnes scheme (Majcen et al. 2008) and KAMA data are analyzed to a 2-km grid using ° Downward buoyant acceleration occurs throughout (<500 m) behind the FFGF at 2250 (Figs. 7, 8) '
PO e e i, a Cressman scheme. RFD and RFD surge and provides “background” . The circuit rotates cvelonically around low-leve]  >Foure 9 (a c) Paths Trajectory “A” Trajectory “E”
2303:31 O amartRT | Wl ¢ S idal turbati to the initial wind fil downward-acceleration (Fi 5) y y of trajectories “A” and “E” 2300:00 2300:00
B3 IR0 sl ois L L Ls LI Binal o rers . '9-9). _ mesocyclone (Fig. 8) with trajectories along the  as denoted in Fig. 8. B o’
‘ | and additive noise (Dowell and Wicker 2009) are  The VPPGF Is separated into estimated contributions e I T ey pariancing larqer Horizontal pressure |
- e used to maintain ensemble spread of buoyancy and vertical perturbation pressure B - : ik gradient acceleration 4
: 3 | _ -_ ) N vertical excursions (Figs. 7, 9). vectors are plotted in ¢
: : » As the EnKF pressure field will contain large errors ~ gradient using: . Horizontal PPGF responsible for changes in blue along trajectory path ;
g -di ' : ) . . . and trajectory position at &
B (Lor?l?rl?:t?oﬁuiezs%%?e’ :igledt?srergtr(ijler:/]:g?:grr]nalthe direction and wind speed of trajectories and Select times s labeled. s
| 0 { P o P nd and th f - fiold dynamic VPPGF primarily responsibly for Contours as in Fig. 8. (b,
PTIp—— i A ik il 8 ensemble mean wind and thermodynamic fields. changes in vertical velocity (Figs. 9, 10). ?)ajelgsryéf” i (3) (b)
i - . Time (UTC) * Retrieval technique Is described by Potvin and . s .
supercell. Estimated position of internal RFD : _ : : : _ _ _ : : : trajectory “E”. Vertical
surge gust fronts are denoted by dashed Slgture 3. T!Imte - of ellet\_/atlon_ adngles usedin  Wicker (2013) and is based on techniques of Hane < Structure of internal RFD surge and GF primarily « Which comes first, the low-level mesocyclone acceleration vectors are
lines and wall cloud associated with low-level ~ data assimiiation. Assimiiation windows are ' ' ' ibuti ’ lotted every 30 s with
mesorcions ic G denoted by alternating shaded columns. et al. (1982) and Liou et al. (2003). determined by the dynamic contribution to the VPPGF. or the RFD surge? rped(blue) Vesétors
Dynamic Pressure Acceleration denoting vertical
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» Figure 10. Time-series
plots of (a) height (m), (b)
vertical velocity (m s1),
(c) buoyancy
acceleration (m s2), (d)
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A SN . NG [} ¢ 4 A : - ] | A | gradient acceleration (m

- - f | | BN s2), and (f) vertical

pressure gradient
acceleration (m s?).
dl Shaded region
represents the range in
values of all trajectories
comprising the material
circuit, the mean

trajectory value is plotted
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, '‘B”, and “D” from Fig.
8 are plotted in green,
blue, and purple,
respectively.
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