

CLIMATE RESEARCH FACILITY

Abstract

With the acquisition of a number of X- and C-band scanning precipitation radars, the Atmospheric Radiation Measurement (ARM) climate facility now routinely deals with large amounts of complex data from these instruments. The measured parameters from these radars as well as value-added products (VAPs) derived from these data are made available to the radar, cloud and climate modeling communities. Preparing these data for dissemination requires extensive use of computational resources and algorithms, which are not well addressed by current software packages. To address these needs we have developed the Python-ARM Radar Toolkit (Py-ART), an open source package for working with weather radar data.

Py-ART offers a powerful interpreted environment for ingesting radar data from a number of formats, correcting for aliasing and attenuation, mapping radar coordinate data from a single or multiple radars to a Cartesian grid, and performing a number of geophysical retrievals on the data. The package is capable of creating Climate and Forecast (CF) standard NetCDF files as well as files in the emerging CF-Radial format for antenna coordinate data. Py-ART is written in the Python programming language, taking advantage of the powerful scientific libraries NumPy, SciPy, and matplotlib, available to the language, as well as interfacing with legacy C and FORTRAN radar code. The package is available freely under a BSD license and can be downloaded from https://github.com/ARM-DOE/pyart/.

Ingest and Writing

Py-ART has the ability to natively ingest (read) radar data from MDV, Sigmet, NEXRAD Level 2, and CF/Radial, as well as other NetCDF based formats. Using a Cython interface, file formats supported by the NASA TRMM Radar Software Library (UF, Lassen) can also be ingested and used by Py-ART. Field data and instrument metadata are stored in memory as a **Radar** object with which the routines in Py-ART can interact. Data can be written out to Climate and Forecast (CF) standard NetCDF files which conform to the the CF/Radial standard.

Native Py-ART Ingest	RSL Ingest
X (and writing)	
Х	
Х	Х
	Х
Level II	Level II
	Х
	X

Mapping and Gridding

Radar data is collected in antenna coordinates (similar to radial coordinates). For many purposes, it is useful to map these data to a Cartesian grid. Py-ART includes routines to perform this gridding on moments from one or multiple radars using a nearest neighbor distance-weighted interpolation which utilizes a KD-Tree or Ball Tree for efficient nearest neighbor lookups. The resulting gridded data and metadata is stored in a **Grid** object.

1 2 3	import <mark>matplotlib.pyplot</mark> as plt import pyart
4	
5 6	radar_sw = pyart.io.read_netcdf('swx_20120520_0641.nc') radar_se = pyart.io.read_netcdf('sex_20120520_0641.nc')
7	radar_se = pyarc.io.read_neccur(sex_20120520_0041.ne)
8	# perform Cartesian mapping, limit to the reflectivity field.
9	
10	(radar_se, radar_sw),
11	grid_shape=(401, 401, 2),
12	grid_limits=((-60000, 40000), (-50000, 40000), (0, 1000)),
13	grid_origin = (36.57861, -97.363611),
14	refl_field='corrected_reflectivity_horizontal',
15	max_refl=100.)
16	
17	# create the plot
	fig = plt.figure()
19	· _ ·
20	
21	origin='lower', extent=(-60, 40, -50, 40), vmin=0, vmax=48)
22	fig.savefig('figure.png')

The Python-ARM Radar Toolkit (Py-ART), an open source package for weather radar.

Jonathan Helmus¹, Scott Collis¹, Karen Johnson², Kirk North³, Scott Giangrande², and Michael Jensen².

¹Environmental Science Division, Argonne National Laboratory ²Environmental Sciences Department, Brookhaven National Laboratory ³Atmospheric and Oceanic Sciences, McGill University

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by U Chicago Argonne, LLC.

National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation