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Abstract— We present a novel digital signal processing procedure, named Eigenvalue 
Signal Processing (henceforth ESP), patented by the first author with Brookhaven Science 
Associates in 2013. The method enables the removal of the bias due to antenna coherent 
cross-channel coupling and is applicable in the LDR mode, the ATSR mode and the 
STSR orthogonal mode of weather radar measurements. In this work we focus on the 
LDR mode and consider copolar reflectivity at horizontal transmit (ZHH), cross-polar 
reflectivity at horizontal transmit (ZVH), linear depolarization ratio at horizontal transmit 
(LDRH) and degree of polarization at horizontal transmit (DOPH). The eigenvalue signal 
processing method is substantiated by an experiment carried out in November 2012 using 
C-band weather radar with a parabolic reflector located at the Selex Systems Integration 
(Selex SI) facilities in Neuss, Germany. The experiment involved comparison of weather 
radar measurements taken 1.5 minutes apart in two hardware configurations, namely with 
cross-coupling on (cc-on) and cross-coupling off (cc-off). It is experimentally 
demonstrated that eigenvalue-derived variables are invariant with respect to antenna 
coherent cross-channel coupling. This property had to be expected, since the eigenvalues 
of the Coherency matrix are SU(2) invariant. 
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I. INTRODUCTION 
 

The development of polarimetric phased array weather radars is critical for the MPAR (Multi-function Phased 

Array Radar) mission. The major technological challenge in phased array weather radar polarimetry is attaining an 

acceptable cross-polar isolation between the H and V channels of the radar system. The present paper proposes 

Eigenvalue Signal Processing (ESP) to mitigate  the problem of antenna cross-polarization isolation, and is potentially 

suitable for implementation in polarimetric phased array antennas, but also in conventional parabolic reflectors. A 

prerequisite for the understanding of the present paper is reference [1]. The Degree of Polarization at 

Horizontal/Vertical transmit is the theoretical centerpiece that permits the derivation of unbiased estimates of 

Reflectivity Z, Linear Depolarization Ratio LDR, and Differential Reflectivity ZDR. The strength of the ESP approach 

resides in the fact that bias correction is obtained without knowing the actual amount of antenna cross-polar coupling. 

Indeed, the cross-polar correlation coefficients at horizontal and vertical transmit (ρxh and ρxv) do provide an intrinsic 

measurement of antenna coherent cross-channel coupling (equation 66 in reference [1]), and the diagonalization of the 

Coherency matrices at horizontal and vertical polarizations automatically removes the bias from the two diagonal 

elements. This aspect is crucial: in the framework herein described, bias correction does not involve multiplying the 

retrieved scattering matrix with a “correction” matrix. The latter requires calibration to be performed on a beam-by-

beam basis and, especially for large phased-arrays, it would render the engineering task daunting. Eigenvalue Signal 

Processing cannot retrieve unbiased scattering matrices but, under the reasonable assumption of target reflection 

symmetry [2], it can retrieve the unbiased Coherency matrices at horizontal and vertical polarization transmit, 

providing unbiased estimates for reflectivity Z, differential reflectivity ZDR, and linear depolarization ratio LDR.  

ESP hinges on three theoretical pillars: 

1. The assumption that weather scatterers possess reflection symmetry [2], that is, they are non-canted and 

their intrinsic cross-polar correlation coefficients (ρxh and ρxv) are equal to 0. We remind the reader that 

target reflection symmetry also underpins the choice of the STSR hybrid polarimetric architecture in 

present-day weather radars at S, C and X bands (e.g. NEXRAD) and is therefore considered to be a safe 

assumption [3]. 
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2. The invariance of Degree of Polarization at Horizontal/Vertical transmit with respect to antenna coupling. 

An exhaustive analysis of DOPH is provided in reference [1]. Together with the previous point, DOPH 

invariance permits to derive an unbiased estimate for LDR, in the following named LDRESP. 

3. The invariance of the trace of the Coherency matrix with respect to antenna coupling. This permits to 

derive an unbiased estimate for Z, in the following named ZESP. Applying the same procedure to the two 

Coherency matrices at H and V transmit yields an unbiased estimate for differential reflectivity ZDR, in 

the following named ZDR_ESP. 

From a superior viewpoint, there is only one theoretical principle underlying ESP: SU(2) transformations are an 

accurate mathematical representation of coherent antenna coupling acting on the antenna height spinor both on transit 

and receive (a derivation of the contravariant antenna height spinor and of the covariant wave spinor is presented in 

[4]). Since the eigenvalues of the Coherency matrix are SU(2) invariant, it follows that variables derived from the 

eigenvalues are also invariant. ESP theory provides an algebraic proof that the largest and smallest eigenvalues of the 

Coherency matrix correspond to the copolar and cross-polar powers measured by an antenna that is perfectly aligned 

with the principal axes of the illuminated distributed scatterer. In fact, Eigenvalue Signal Processing produces an 

alignment between the illuminated scatterers, (assumed to possess reflection symmetry and therefore characterized by 

intrinsic cross-polar correlation coefficients ρxh and ρxv equal to zero) and the antenna height spinor (assumed to be 

slightly tilted from the horizontal/vertical because of coherent cross-channel coupling). The alignment is produced by 

means of the diagonalization of the Coherency matrices at horizontal and vertical transmit JH and JV. The source of 

the “misalignment” is ascribed to the coherent cross-polar power radiated by the antenna inducing positive non-zero 

cross-polar correlation coefficients. 

In a loose analogy, Eigenvalue Signal Processing is for distributed (stochastic) scatterers what the Graves Power 

matrix theory is for single scatterers [5, 6]. In both cases the eigenvalues correspond to powers in the "aligned" 

reference frame. 
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Even though the present body of work originated within the synthetic aperture radar (SAR) polarimetry 

community [7-9], it has substantially departed from it, especially because all variables treated in the present paper 

(ESP variables) are obtained from the eigenvalues of the 2x2 Coherency matrices JH and JV, whereas in the SAR 

polarimetry community focus is on eigenvalue- and eigenvector-derived variables of the 3x3 Covariance matrix C [8]. 

Operating on the 2x2 Coherency matrices involves SU(2) transformations, whereas operating on the 3x3 Covariance 

matrix involves SU(3) transformations. This aspect is fundamental and should not be overlooked. SU(2) describes a 

set of transformations that exactly corresponds to the set of polarization basis transformations, and therefore describes 

all the possible distortions imposed by the antenna on the radiated polarization state. This exact correspondence is 

such that SU(2)-derived eigenvalues (under the assumption of target reflection symmetry) exactly correspond to the 

antenna-unbiased copolar and cross-polar powers, as will be analytically illustrated in the following. The drawback of 

the eigen-analysis of the Coherency matrices is that, obviously, it cannot provide information about the 1,3 term of the 

3x3 Covariance matrix, information traditionally encapsulated in the copolar correlation coefficient ρhv and differential 

phase ΨDP. Eigen-analysis of the 3x3 Covariance matrix can however provide eigenvalue- and eigenvector-derived 

variables – scattering entropy H and the alpha angle α - which are good proxies for ρhv and differential phase (ΨDP = 

ΦDP + δco) respectively [10, 11]. In this case however, SU(3) spans a set of transformations that are larger (in the strict 

sense) than the set of polarization bases transformations [7], and the correspondence between eigen-variables (H, α) 

and their traditional counterparts (ρhv and ΨDP) is only approximate.  

In the following, we will only focus on variables derived from the eigenvalues of the Coherency matrices JH and 

JV. The ESP variables defined in the following (ZESP, ZDR_ESP, LDRESP) are antenna-unbiased replacements for 

standard radar meteorological variables obtained from the diagonal of the Covariance (Coherency) matrix: Reflectivity 

Z, Differential Reflectivity ZDR and Linear Depolarization Ratio LDR. 
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A. Polarimetric Operating Modes and Orthogonal Waveforms 
 

Eigenvalue Signal Processing requires orthogonal polarization bases and is therefore applicable when the radar 

operates at LDR mode (Linear Depolarization Ratio mode), ATSR mode (Alternate Transmission Simultaneous 

Receive mode) or STSR orthogonal mode (Simultaneous Transmission Simultaneous Receive orthogonal mode - Fig. 

1B and 1C), but it is not applicable at STSR hybrid mode (Simultaneous Transmission Simultaneous Receive hybrid 

mode Fig. 1A). LDR mode corresponds to horizontal polarization transmit, and simultaneous reception of H and V; 

ATSR mode corresponds to H transmit and simultaneous H and V receive, followed by V transmit and simultaneous 

H and V receive. STSR hybrid mode (Fig. 1A) corresponds to Simultaneous Transmission of H and V and 

Simultaneous Reception of H and V; here, hybrid indicates that the receive polarization basis is not copolar and cross-

polar to the transmit polarization. STSR hybrid mode is the default choice for operational weather radars. STSR 

orthogonal corresponds to the simultaneous transmission and simultaneous reception of orthogonal H and V 

waveforms, with the capability of retrieving the four components of the scattering matrix S (shh, shv, svh, svv) in one 

pulse repetition time, instead of two as in the ATSR mode [12-14]. In this case, the word orthogonal refers to the two 

waveforms used to simultaneously excite the H and V channels, but may also refer to the fact that, using waveform 

diversity, the polarization basis in use is orthogonal even though the two pulses are radiated simultaneously. ESP is 

fully compatible with the use of waveform diversity in the radar system, since ESP relies on processing performed on 

the elements of the 2x2 Coherency matrices, that involve correlations of each of the two waveforms with itself, but do 

not involve correlations between the two different waveforms (the latter appearing only in the 1,3 term of the 3x3 

Covariance matrix). In fig. 1B and 1C we consider two orthogonal waveforms, where the term orthogonal refers to 

their disjoint spectral support. Other definitions of orthogonal waveforms exist, for example phase-coded waveforms 

may be termed orthogonal even if their spectral support is overlapping. In any case, ESP is always compatible with 

waveform diversity, either spectrally disjoint, or phase-coded waveforms. 

STSR orthogonal mode is looked at with increasing interest for phased array weather radar polarimetry, due to its 

property of lowering the isolation requirement on cross-polar isolation to the levels of the ATSR mode (requirement 

for ATSR mode is -25 dB, whereas for STSR hybrid it is around -45 dB [15]). 
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TABLE I.  POLARIMETRIC ARCHITECTURES FOR WEATHER RADARS 

Polarimetric Architecture Standard Variables ESP variables 

LDR mode (2-pol) Z   LDR ZESP   LDRESP 

STSR hybrid mode (2-pol) Z    ZDR  ρhv  KDP None 

ATSR mode (4-pol) Z   LDR  ZDR  ρhv  KDP ZESP   LDRESP  ZDR_ESP 

STSR orthogonal mode (4-pol) Z   LDR  ZDR  ρhv  KDP ZESP   LDRESP  ZDR_ESP 

 

Besides lowering the requirement for antenna isolation to the levels of the ATSR mode, the use of orthogonal 

waveforms also permits the implementation of full polarimetry in half the scan time time as the ATSR mode or, 

equivalently, the same scan time as the STSR hybrid mode. As an application example, we consider two orthogonal 

waveforms WF1 and WF2 with disjoint spectral support such that their correlation is 0. Switching between the two 

waveforms in the H and V channels as indicated in Fig. 1C (STSR orthogonal 4-pol mode) allows one to retrieve all 

polarimetric variables in the same scan time as the STSR hybrid mode (Fig. 1A). The STSR orthogonal 4-pol mode 

(Fig. 1C) yields Z, ZDR and LDR at 0 lag (for which ESP is applicable) and ρhv and KDP can be computed at 1 lag, as 

indicated in [16] and page 347 of [17]. 

 

 

Fig. 1A  STSR hybrid 2-pol mode. The same waveform (WF1) excites simultaneously the H and V channels, 

yielding estimates of Z, ZDR, ρhv and KDP at 0 lag. This operating mode is the standard in use for weather radar 

systems at S, C and X bands (e.g. NEXRAD). In this operating mode, ESP is not applicable, since transmit and receive 

polarization states are not orthogonal (hence the term hybrid). 
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Fig. 1B STSR orthogonal 2-pol mode. Two orthogonal waveforms (WF1 and WF2) are used to excite the H 

and V channels. This yields simultanoeus measurements of Z, ZDR and LDR, yet prevents the estimation of ρhv and 

KDP since the correlation of the two orthogonal waveforms, with disjoint spectral support, is 0 by definition (e.g. 

reference [12, 13]). ESP is applicable for the estimation of Z, ZDR and LDR. 

 

 

Fig. 1C STSR orthogonal 4-pol mode. Two orthogonal waveforms (WF1 and WF2) are used to excite the H 

and V channels by switching between Waveform 1 (WF1) and Waveform 2 (WF2) on a pulse-to-pulse basis. This 

operating mode yields Z, ZDR and LDR at 0 lag (for which ESP is applicable) and ρhv and KDP at 1 lag [16, 17] in the 

same scan time as the STSR hybrid 2-pol pulsing scheme (Fig. 1A). 
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B. Coherent versus Incoherent cross-polar power:a limitation in the effectiveness of ESP 
 

The unwanted cross-polar power radiated by any antenna can be split in two components: the incoherent cross-

polar power, and the coherent cross-polar power [18]. The incoherent cross-polar power appears as a quad of perfectly 

symmetric offset lobes of the cross-polar antenna pattern, and is produced by the natural geometry of the electric field 

lines on the radiating surface of the antenna. The quad of offset cross-polar lobes is intrinsic to the parabolic reflectors 

as well as the microstrip patch antennas. When a cloud of spheres is illuminated (or, more generally, any target with 

reflection symmetry), such quad of offset lobes produces backscattered cross-polar power that is uncorrelated with the 

backscattered copolar power, and the cross-polar correlation coefficients (ρxh and ρxv) are equal to zero. The bias in 

polarimetric variables induced by incoherent cross-polar power cannot be removed by eigenvalue signal processing. In 

the case of antennas characterized by the presence of significant incoherent cross-polar power, Eigenvalue Signal 

Processing cannot recover the polarimetric dynamic range corresponding to a well-isolated antenna. We will see in the 

ESP experiment in Section III that this is the case for the cc-off configuration: the antenna in use is characterized by 

slightly high minimum measurable LDR (~ - 26 dB) yet the cross-polar correlation coefficient ρxh is still relatively low 

(~ 0.2 - 0.3), indicating the presence of incoherent cross-polar power. 

The coherent cross-polar power appears whenever the 4 offset lobes are unbalanced (as may be the case in real 

parabolic reflectors, where the offset cross-polar lobes display different amplitudes and are not perfectly symmetric), 

or whenever cross-polar power is radiated axially, that is, along the bore sight of the antenna. Such coaxial cross-polar 

power is generated by a number of sources. In the case of parabolic reflectors, it can be generated by imperfections in 

the reflector surface, feed-horn misalignment, finite isolation of the orthomode transducer or scattering from the feed 

support struts. In the case of a planar phased array scanning off the horizontal and vertical planes, it is generated by the 

misalignment of the radiated field lines with respect to the local horizontal [19]. The coherent (coaxial) cross-polar 

power significantly increases the cross-polar correlation coefficients (ρxh and ρxv), but the bias it introduces in the 

polarimetric variables can be removed by eigenvalue signal processing. We will see in Section III that this is the case 

of the cc-on configuration, where the bias in polarimetric variables induced by waveguide coupling can be corrected 

by applying ESP. 

In general, minimum measurable LDR (in drizzle or warm clouds) is the optimal metric to establish the 

polarimetric quality of the antenna.  
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ESP can only correct for the coherent component of cross-polar power, and its effectiveness is established by the 

values (in drizzle or warm clouds) of the cross-polar correlation coefficients (ρxh and ρxv). The cross-polar correlation 

coefficients do provide information about the spatial structure of cross-polar power, that is, low cross-polar correlation 

coefficeints (< 0.2 - 0.3) indicate that incoherent cross-polar power is dominant (quad of offset lobes), whereas high 

cross-polar correlation coefficients (> 0.7 - 0.8) indicate that coherent (coaxial) cross-polar power is dominant, as 

explained in [1]. Therefore, ESP always improves the performance of the antenna, but the extent of the improvement 

is driven by the coherent vs. incoherent nature of cross-polar power. Specifically, ESP only removes the coherent 

component of cross-polar power, and its application may yield different results on different antennas, depending on 

the coherent power level of the antenna in use. For example, for the cc-off case illustrated in the following, where 

incoherent cross-pol power dominates, the improvement brought by ESP is small. The effects of ESP are also 

unnoticeable in well-isolated antennas with low LDR (< -30 dB) and low ρxh (< 0.3) in drizzle/light rain, like the 

recently modified CSU-CHILL [20] or the KOUN WSR-88D prototype at NSSL. For example, the effects of ESP on 

the KOUN radar are essentially undetectable: in that case minimum measurable LDR (drizzle/light rain) is around -33 

dB, and the corresponding ρxh is around 0.2 [21], indicating the presence of only a very small amount of incoherent 

cross-polar power (quad of offset lobes). 

So, if incoherent cross-polar power (quad of offset lobes - low ρxh and ρxv) is dominant, Eigenvalue Signal 

Processing does not significantly improve antenna isolation, since the effect of cross-polar power does not correspond 

to an SU(2) rotation of the radiated covariant wave spinor [4]. If coaxial cross-polar power is dominant (large cross-

polar correlation coefficients when drizzle or warm cloud droplets are illuminated), the application of ESP permits to 

correct Z, LDR and ZDR for the bias induced by poor antenna isolation. This result has important implications in 

weather radar polarimetry, both for parabolic reflectors and for phased-array antennas. 
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Fig.2 Idealized antenna cross-polar patterns corresponding to incoherent cross-polar power (A), dominant in 

parabolic reflectors, and coherent cross-polar power (B), dominant in planar phased array antennas. 

 

II. THEORETICAL BACKGROUND 

 
A. Coherency matrix 

 

In this paragraph we reprise the concepts exposed in [1]. Weather radars at LDR mode measure the Coherency 

matrix at horizontal polarization transmit (JH), a matrix with 4 degrees of freedom. Note that this matrix is the upper 

left 2×2 minor of the backscatter covariance matrix in [22]. 

𝐉! =
s!! ! s!!∗ s!"
s!!s!"∗ s!" !  

            (1) 

From the Coherency matrix, radar variables are evaluated. From the two degrees of freedom on the diagonal, we 

can extract copolar reflectivity (ZHH) cross-polar reflectivity (ZVH) and the linear depolarization ratio (LDRH) 

Z!! ∝    s!! !  

            (2) 

Z!" ∝ s!" !  

            (3) 
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LDR! =
s!" !

s!! !  

            (4) 

Reflectivity is proportional to the power backscattered at horizontal polarization, the linear depolarization ratio is 

representative of the target-induced coupling between copolar (horizontal) and cross-polar (vertical) channels. The two 

degrees of freedom on the off-diagonal term are captured by the cross-polar correlation coefficient (ρxh) and the cross-

polar phase ψ!" (propagation Φ!" plus back scatter δ!"). 

ρ!" =
s!!∗ s!"

s!! ! s!" !
 

            (5) 

ψ!" = Φ!" + δ!" = arg s!!∗ s!"  

            (6) 

The cross-polar correlation coefficient ranges between 0 and 1, and is a normalized measure of the correlation 

between copolar and cross-polar signals. It is shown in [2] that cross-correlation departs from zero if and only if the 

target departs from reflection symmetry. Besides canted hydrometeors and ground clutter, aircrafts or other man-made 

objects can appear with positive, non-zero ρxh. The Coherency matrix JH can be diagonalized to yield, 

𝐉! = 𝐔 λ!" 0
0 λ!"

𝐔!𝟏 

            (7) 
 

Where λH1 is the largest eigenvalue and λH2 is the smallest eigenvalue of the Coherency matrix at horizontal 

transmit. The trace (corresponding to the total backscattered power) and the degree of polarization at horizontal 

transmit (corresponding to the ratio of completely polarized power to total power) are also derived from the 

eigenvalues. 

Tr𝐉! = λ!" + λ!" 

            (8) 

p! =
λ!" − λ!"
λ!" + λ!"

= 1 −
4det𝐉!
Tr𝐉! ! 
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            (9) 

These variables can also be expressed in terms of the entries of the Coherency matrix JH as: 

Tr𝐉! = s!! ! + s!" !  

            (10) 

p! = 1 −
4 s!! ! s!" ! − s!!s!"∗

!

s!! ! + s!" ! !  

            (11) 

The degree of polarization at horizontal transmit is related to LDRH and ρxh by a fundamental identity in radar 

polarimetry, obtainable by simple algebraic manipulation of (11) [23, 24]. 

1 − p!! =
4  LDR!

1 + LDR! ! 1 − ρ!"!  

            (12) 

The diagonalization of the Coherency matrix nulls the cross-polar correlation coefficient ρxh, and the formula in (12) 

simplifies to  

p! =
1 − LDR!
1 + LDR!

 

            (13) 

Algebraic manipulation of (13) and use of (9) permits to define the first ESP variable: LDRH_ESP 

LDR!_!"# ≡
λ!"
λ!"

 

(14) 

For an ideal antenna with no coherent cross-channel coupling (that is, an antenna that yields ρxh=0 and ρxv=0   

when scatterers with reflection symmetry are illuminated), LDRH_ESP is equal to LDRH. In presence of coherent cross-

channel coupling (that is, the antenna height spinor undergoes a small SU(2) rotation), LDRH is positively biased, 

whereas LDRH_ESP is not significantly biased. In general, the following inequality holds as shown by a simple analysis 

of Fig.1a of reference [1]. 
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LDR!_!"# ≤ LDR! 

(15) 

The next step is the realization that the trace of the Coherency matrix JH is invariant for SU(2) transformations,  

Tr𝐉! = s!! ! + s!" ! = Z!! 1 + LDR! = λ!" + λ!" = Z!!_!"# 1 + LDR!_!"#  

            (16) 

This leads to the identification of the largest eigenvalue of the Coherency matrix (λH1) as the copolar (main) power 

received at LDR mode by an “aligned” antenna. This observation defines the second ESP variable: 

Z!!_!"# ≡ λ!" 

            (17) 

Also, it follows from (16) that the copolar power received by a perfectly aligned antenna is always larger than its 

biased counterpart. Equality only holds when the cross-polar power is purely incoherent (perfect quad of offset cross-

polar lobes). 

Z!!_!"# ≥ Z!! 

            (18) 

The antenna-unbiased cross-polar reflectivity (power received in the vertical channel for the case of horizontal 

polarization transmit) is given by the smallest eigenvalue of the Coherency matrix and is in general smaller than its 

biased counterpart: 

Z!"_!"# ≡ λ!" 

            (19) 

Z!"_!"# ≤ Z!" 

            (20) 

The development above suggests a precise physical meaning for the eigenvalues of the Coherency matrix, that is, 

the largest and the smallest eigenvalues correspond to the copolar and cross-polar powers respectively, as measured by 

an antenna whose antenna height spinor is perfectly aligned with the principal axes of the illuminated scatterers. The 
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eigenvalues correspond to estimates of copolar and cross-polar powers that are unbiased by antenna coherent cross-

polarization coupling, the unbiased depolarization ratio (LDRH_ESP) is given by their ratio. 

 

B. Covariance matrix 
 

If the weather radar operates at ATSR mode or STSR orthogonal mode, the development above can also be applied 

to the Coherency matrix at vertical polarization transmit JV.  

𝐉! =
s!! ! s!!∗ s!"
s!!s!"∗ s!" !  

            (21) 

In this case, copolar reflectivity, cross-polar reflectivity and linear depolarization ratio at vertical transmit are 

respectively defined as 

Z!! ∝    s!! !  

            (22) 

Z!" ∝    s!" !  

            (23) 

LDR! ≡
s!" !

s!! !  

            (24) 

These can be corrected for the bias induced by antenna coherent cross-polarization simply by replacing them with 

their eigenvalue-derived counterparts: 

Z!!_!"# ≡ λ!" 

            (25) 

Z!"_!"# ≡ λ!" 

            (26) 
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LDR!_!"# ≡
λ!"
λ!"

 

            (27) 

where λV1 and λV2 are respectively the largest and smallest eigenvalues of the Coherency matrix at vertical polarization 

transmit JV. The following inequalities hold for copolar reflectivity, cross-polar reflectivity and linear depolarization 

ratio: 

Z!!_!"# ≥ Z!! 

            (28) 

Z!"_!"# ≤ Z!" 

            (29) 

LDR!_!"# ≤ LDR! 

            (30) 

The last eigenvalue-derived variable is the bias-corrected replacement for differential reflectivity ZDR, which can be 

obtained as the ratio of copolar reflectivities at horizontal and vertical transmit 

Z!"_!"# ≡
Z!!_!"#
Z!!_!"#

≡
λ!"
λ!"

 

            (31) 

The theory exposed in this Section permits the removal of the bias induced by antenna coherent cross-polarization 

coupling in power-like weather radar variables, specifically reflectivity Z, Linear Depolarization Ratio LDR and 

Differential Reflectivity ZDR. The elegance of eigenvalue signal processing resides in the fact that bias correction does 

not require knowledge of the amount of cross-coupling, since the latter is intrinsically measured by the cross-polar 

correlation coefficients ρxh and ρxv and the diagonalization of the Coherency matrix automatically brings them to zero. 

It may have been noted that ESP does not provide replacements for variables derived from the 1,3 term of the 

covariance matrix, specifically the copolar correlation coefficient ρhv and the specific differential phase KDP. This had 

to be expected, since ESP diagonalizes the 2x2 Coherency matrices JH and JV, but does not involve the 1,3 term of the 

Covariance matrix. However, the copolar correlation coefficient (ρhv) and the specific differential phase (KDP), 
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retreived in the ATSR mode and STSR orthogonal 4-pol mode, are not significantly affected by antenna cross-channel 

coupling [15]. At STSR orthogonal mode (both 2-pol and 4-pol), ESP is applicable for the retrieval of unbiased 

estimates of Z, ZDR and LDR, and at the same time it does not pose any constraint on the waveforms in use. In the case 

of the STSR hybrid mode, ESP is not applicable, because the receive polarization basis is not orthogonal to the 

transmit polarization basis. In Table II is a summary of radar meteorological variables and their eigenvalue-derived 

counterparts (far-right column). Even though not commonly used in radar meteorology, the degree of polarization and 

the trace of the coherency matrix (not listed in the table) are also eigenvalue-derived variables, and automatically 

enjoy the property of being robust against antenna cross-channel coupling. 

 

TABLE II.  ESP VARIABLES 

Name Standard ESP variables 

Reflectivity at horizontal transmit ZHH ZHH_ESP 

Reflectivity at vertical transmit ZVV ZVV_ESP 

Linear Depolariz. Ratio at horizontal tx LDRH LDRH_ESP 

Linear Depolariz. Ratio at vertical tx LDRV LDRV_ESP 

Differential Reflectivity ZDR ZDR_ESP 

Copolar correlation coefficient ρhv - 

Specific Differential phase KDP - 

 

 

III. EIGENVALUE SIGNAL PROCESSING EXPERIMENT 
 

Eigenvalue Signal Processing was tested at LDR mode for ZHH_ESP, ZVH_ESP, LDRH_ESP and DOPH in an experiment 

conducted on November 10th 2012 at the Selex Systems Integration facilities in Neuss, Nordrhein-Westfalen, 

Germany [25] at around 16:20 local time, when ground temperature was +11˚C. The data were collected with a 

modified METEOR 600C dual-polarization Doppler weather radar, that can implement both the STSR hybrid mode 

and the LDR mode [26]. The parabolic reflector C-band antenna (wavelength 5.3 cm, beamwidth 1.0˚ - for more 

specifications, antenna is indicated as CLP10 in [27]), acquired a PPI at 1.5˚ elevation in a weather event consisting 

of light stratiform rain, with the melting band visible as a low LDR ring around the radar at about 50 km distance. 

Pulse Repetition Frequency (PRF) was 1300 Hz, range resolution was 0.15 km, antenna azimuth velocity was 4.8˚/s, 

number of pulses per radial was 135 (collected over an angular interval of 0.5˚). The radar was operated at LDR 
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mode, in two different configurations indicated with cc-on (red curve in the plots) and cc-off (blue and green curves 

in the plots). The cc-on acquisition was taken between 16:18:20 and 16:19:40 CET (Central European Time), 

whereas the cc-off acquisition was taken between 16:19:40 and 16:21:00 CET. The two acquisitions are spaced in 

time by about 1.5 minutes, and it can reasonably be assumed that the illuminated scatterers are the same. In the cc-off 

acquisition, the radar was operated in its standard LDR mode configuration, whereas in the cc-on acquisition, the 

detrimental effects of a poorly isolated antenna were simulated by disconnecting the V transmit waveguide and by 

injecting into the Tx port of the V circulator a signal sample extracted from the H transmit channel via a 20 dB 

coupler (Fig.3). By default, the radar is a hybrid design, that is, the transmitted pulse is split and fed with equal 

powers to the H and V waveguides, and reception  occurs simultaneously in the H and V channels (STSR hybrid 

mode). In order to implement the LDR mode, a remotely controlled mechanical waveguide switch redirects the full 

transmit power to the horizontal (H) polarization channel while the system still receives in both channels. In the 

following, we refer to this LDR mode hardware configuration as cross-coupling off (cc-off). To simulate antenna 

coupling, the system was modified as indicated in Fig. 3: the transmitter was directly connected to the H polarization 

transmit channel and to increase the cross-polarization of the system, a waveguide coupler (xpol coupler in Fig. 3) 

was inserted into the channel; the extracted pulse is then injected into the vertical (V) polarization channel via the 

waveguide switch. In the following, we refer to this hardware configuration as cross-coupling on (cc-on). This allows 

a quick on- and off-switching of the transmit cross-polarization. The difference in attenuation between the H and V 

antenna waveguide runs was H/V=0.75 dB. The coupling loss of the xpol signal was 22.4 dB. The described set-up 

simulates coherent (coaxial) cross-polar power on transmission only, since on reception the antenna is still 

acceptably isolated, and can be modelled with the following matrix multiplication 

𝐒! =   𝐒  𝐅 =
s!! s!"
s!" s!!

F!! 0
F!" F!!

1
0  

(32) 

Depending on the exact hardware source of cross-polar power, the mathematical models may differ. The proposed 

experiment validates the robustness of eigenvalue signal processing with respect to coaxial cross-polarization on 

transmit in radars with parabolic reflector antennas. The effects of antenna cross-coupling on transmit are the most 

relevant, since SU(2) transformations of the Coherency matrix do exactly correspond to a change of the receive 

polarization basis, and therefore the invariance of eigenvalue-derived variables with respect to cross-channel 

coupling on receive is mathematically exact. 
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In the acquired PPIs (Fig. 4) considerable blockage occurs in the western sector, and interference appears as radial 

lines and arcs throughout the rest of the PPI disc. Radials for the analysis were chosen at azimuth angle of 352˚, 

where the microwave ray only goes through light rain (from 10 to 40 km) and the melting band (from 45 to 60 km), 

but avoids more complex scattering situations like ground clutter (visible at around 25 km from the radar in the NE 

sector) and electromagnetic interference. 

In the following paragraph A, we analyze the effects of eigenvalue signal processing on the cc-off hardware 

configuration. In the cc-off configuration, in light rain, the antenna yields slightly high values of LDR (~ -26 dB) and 

low values of ρxh (~ 0.2 - 0.3), indicating that a certain amount of incoherent cross-polar power is present. In this 

case, the bias reduction in polarimetric variables given by ESP is minimal. In fig. 5, blue curves refer to the cc-

off/ESP-off configuration, whereas green curves refer to the cc-off/ESP-on configuration. Besides confirming that 

incoherent cross-polar power cannot be effectively removed by ESP, the results of paragraph A, reported in Fig. 5 

and 6, confirm the theoretical inequalities of (15), (18) and (20). 

In the following paragraph B we compare the cc-off/ESP-off configuration (blue curves) with the cc-on/ESP-on and 

with the cc-on/ESP-off configurations (red curves). In the cc-on configuration cross-polar isolation is significantly 

lowered (LDR in light rain is about -21 dB), but the additional cross-polar power is coherent, as indicated by the 

higher cross-polar correlation coefficient (ρxh ~ 0.8) and the bias in polarimetric varables is effectively removed by 

ESP (Fig. 7). 
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Fig. 3 Radar system block diagram for the cross-coupling on (cc-on) configuration. A 20 dB waveguide coupler 

(Xpol Coupler) extracts power from the H Tx waveguide  and feeds it to the V Tx waveguide. 
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A  Reflectivity   cc-off   B  Reflectivity   cc-on 
 

    
C  LDRH   cc-off   D  LDRH   cc-on  
 

        
E  Degree of Polarization at H Tx cc-off  F  Degree of Polarization at H Tx cc-on  
 
Fig. 4 Panels from A to F are PPIs at 1.5˚ elevation of polarimetric variables at LDR mode. The black circles indicate ranges of 25, 50 and 75 km 
respectively. The PPIs on the left (Panels A, C and E) correspond to data acquired in the cross-coupling off (cc-off) configuration; the PPIs on the 
right (Panels B, D and F) correspond to data acquired in the cross-coupling on (cc-on) configuration. Rain is present between 10 and 50 km from 
the radar, the melting band appears as a low LDRH/DOPH ring beyond 50 km. Beam blockage is present in the western quadrants, clutter is present 
mainly in the first quadrant at about 25 km range. Interference appears as low LDRH/DOPH lines/arcs and changes characteristics between the two 
acquisitions (spaced in time 1.5 minutes). Copolar reflectivity is not significantly affected by coupling. LDRH is affected by coupling, and good 
isolation (panel C) enhances the contrast between rain and the melting band with respect to poor isolation (panel D). LDRH_ESP (not reported for 
compactness) is identical to LDRH cc-off (panel C) and does recover the unbiased LDRH field as shown in Fig. 7E. Finally, DOPH is invariant with 
respect to cross-channel coupling, as can be qualitatively assessed by panels E and F of Fig.4, and further analyzed in Fig. 7F. For the quantitative 
analysis, we select a radial at 352˚ azimuth, where only rain and wet aggregates (melting band) are present. 
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A. ESP for the cc-off configuration 
 
 

The values of LDRH and ρxh in drizzle/light rain provide a comprehensive characterization of the coherent and 

incoherent cross-polar power radiated by the antenna, as explained in [1]. In particular, the cross-polar correlation 

coefficient ρxh provides a measurement of coherent cross-polar power (equation (66) in [1]). 

In the cc-off configuration, the antenna is characterized by intrinsic ρxh equal to about 0.3 (blue curve in Fig. 7C). 

We therefore apply ESP to the cc-off configuration to find that eigenvalue-derived variables (ESP-on) differ slightly 

from their standard (ESP-off) counterparts (Fig. 5), as predicted by the theory of Section II. In the following, we seek 

experimental proof of the inequalities in (15), (18) and (20). For the cc-off configuration, the difference between ZVH 

and ZVH_ESP and between LDRH and LDRH_ESP is visible (Fig. 5 B-C), whereas the difference between ZHH and 

ZHH_ESP is not noticeable (Fig. 5A). In table III, mean and standard deviation of 101 data points between 15 and 30 

km (light rain) are reported and do confirm the inequalities in (15) and (20). To ascertain the validity of the 

inequality in (18), we resorted to consider both cc-off and cc-on configurations, and we reported the differences 

between ZHH_ESP  and ZHH in Fig. 6. We note how ZHH_ESP  > ZHH in the cc-on configuration, and how the difference 

between ESP and traditional variables grows larger for increasing levels of coherent cross-channel coupling (Fig. 6 

and 7). With reference to Fig. 6, we averaged 101 data points between 15 and 30 km from the radar (light rain), 

where the bias induced in copolar reflectivity ZHH (specifically ZHH_ESP - ZHH for the cc-on configuration, Fig. 6B) is 

0.02241 dBZ. Equation (16) of Section II, the trace invariance for SU(2) transformations, links the bias in copolar 

reflectivity ZHH to the bias in linear depolarization ratio LDRH with the formula 

 

Z!!_!"#
Z!!

=
1 + LDR!

1 + LDR!_!"#
 

            (33)  

 

We will see in paragraph B that the difference between LDRH and LDRH_ESP (fig. 7D and 7E) for the cc-on 

configuration for the same data points between 15 and 30 km is 4.82 dB, that, injested in equation (33), yields a 

predicted bias in copolar reflectivity of 0.02238 dB, in perfect agreement with the bias in copolar reflectivity ZHH 

experimentally observed in Fig. 6B. We conclude that  
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• For antennas where incoherent cross-polar power is dominant (ρxh in drizzle/light rain is less than about 

0.3), ESP does not substantially improve the quality of the measurements, as theoretically demonstrated in 

[1] for DOPH. 

• The inequalities in (15), (18) and (20) are experimentally verified. 

• Formula (33) provides an accurate relation between the bias in ZHH and the bias in LDRH. 

• The difference between standard and ESP variables grows larger for increasing levels of coherent antenna 

cross-channel coupling. 

 

 

 
 

A  Copolar reflectivity ESP-off (ZHH, blue curve) and copolar reflectivity ESP-on (ZHH_ESP green curve) for the 

cc-off configuration. With ρxh equal to about 0.3 (Fig. 7C, blue curve), the application of ESP does not significanlty 

affect copolar reflectivity, and the blue and green curves are perfectly superimposed. 
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B Cross-polar reflectivity ESP-off (ZVH, blue curve) and cross-polar reflectivity ESP-on (ZVH_ESP green curve) 

for the cc-off configuration. The application of ESP lowers cross-polar reflectivity as predicted in formula (20). 

 
 

C  Linear Depolarization Ratio ESP-off (LDR, blue curve) and Linear Depolarization Ratio ESP-on (LDRH_ESP 

green curve) for the cc-off configuration. The application of ESP lowers the Linear Depolarization Ratio as predicted 

in formula (15). 

 

Fig. 5 Comparison of ESP-on and ESP-off versions of ZHH, ZVH and LDRH for the cc-off configuration. Even with 

relatively low coherent cross-channel coupling (ρxh is about 0.3 for the cc-off configuration) ESP produces slight 

changes in ZVH and LDRH, in agreement with the theory of Section II. 
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TABLE III.  AVERAGED DATA POINTS BETWEEN 15 AND 30 KM (LIGHT RAIN) FOR CC-OFF 

 Mean Standard 
Deviation 

ZHH 19.62 dBZ 1.86 dBZ 

ZHH_ESP 19.62 dBZ 1.86 dBZ 

ZVH -2.61 dBZ 1.58 dBZ 

ZVH_ESP -3.31 dBZ 1.66 dBZ 

LDRH -25.35 dB 2.48 dB 

LDRH_ESP -26.05 dB 2.56 dB 

 

 

A  Difference between ZHH_ESP and ZHH is negligible for the cc-off configuration (ρxh ∼ 0.3). 
 

B  Difference between ZHH_ESP and ZHH is larger for the cc-on configuration (ρxh ∼ 0.8). 
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Fig. 6 Difference between ZHH_ESP and ZHH for the cc-off (A) and cc-on (B) configurations. Between 15 and 30 km, 

the bias of 0.022 dBZ in copolar reflectivity ZHH showed in 6B is in excellent agreement with the bias in LDRH of 

4.82 dB in Fig 7D. In general, for increasing antenna coherent cross-channel coupling, the difference between ESP 

and standard variables becomes larger. 

 
 
 
 
 
 

B. Comparison between cc-off and cc-on configurations 
 
 
 
We now compare results from the cc-off and cc-on configurations to experimentally prove the theoretical results of 

Section II.  

The cross-polar correlation coefficient ρxh in drizzle/light rain represents the amount of coherent cross-channel 

coupling (equation (66) in [1]). Fig. 7C shows that, in drizzle/light rain between 15 and 30 km, for the cc-off 

configuration the antenna yields values of ρxh around 0.3, whereas for the cc-on configuration the antenna yields 

values around 0.8. In agreement with the theory, coherent cross-channel coupling (induced by the cc-on 

configuration) increases the measured cross-polar correlation coefficient. 

In Fig. 7A, standard (ESP-off) cross-polar reflectivity (ZVH) from the cc-on (red curve) and cc-off (blue curve) 

configurations are compared. We can observe that cross-channel coupling (induced by the cc-on configuration) 

increases cross-polar reflectivity. 

In Fig. 7B, Eigenvalue Signal Processing is applied to data collected in the cc-on configuration (red curve), and 

compared to standard (ESP-off) cross-polar reflectivity from the cc-off configuration (blue curve in Fig. 5B is the 

same as in Fig. 7A). We can observe that ESP lowers cross-polar reflectivity to values comparable to, or lower than 

those corresponding to the ESP-off/cc-off configuration. This is in accordance with the theory. Specifically, ESP-

corrected cross-polar reflectivity (ZVH_ESP, that is, the smallest eigenvalue) is lower than standard (ESP-off) cross-

polar reflectivity from the cc-off configuration (ZVH) because, even in the cc-off configuration, some residual 

coherent cross-channel coupling is present (ρxh ~ 0.3 in Fig. 7C, blue curve).  

Fig. 7D contains standard (ESP-off) LDRH from the cc-on (red curve) and cc-off (blue curve) configurations. It can 

be observed that cross-channel coupling increases LDRH by a significant amount. Such increase is more visible in 

weakly depolarizing scatterers like light rain, and less visible in the melting band. We also note how the dynamic 
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range of LDRH is reduced by increased cross-channel coupling, and therefore poor antenna isolation reduces the 

polarimetric contrast between different target types, making discrimination more difficult. For example, applications 

like supercooled droplets detection, where LDR has shown some discrimination capabilities, require high antenna 

polarimetric purity. 

Fig. 7E shows that application of ESP to data acquired in the cc-on configuration (LDRH_ESP) retrieves values almost 

identical to the cc-off configuration. Note that not only ESP lowers the minimum LDR, but also restores the dynamic 

range corresponding to the cc-off configuration.  

We also proceeded to a more quantitative analysis of 101 data points between 15 and 30 km (light rain), for which 

the mean LDRH_ESP (from cc-on) is -25.94 dB, whereas the mean LDRH from the cc-off configuration is -25.35 dB 

(difference is 0.59 dB). This is in agreement with the theory, predicting LDRH_ESP ≤ LDRH. The standard deviation 

for LDRH cc-off was 2.48 dB and for LDRH_ESP was 2.4 dB. This latter measurement suggests that ESP variables 

(that indirectly incorporate the noisy cross-polar correlation coefficient) are not affected more by noise than their 

standard counterparts. The mean LDRH for the cc-on configuration (ESP-off) was -21.12 dB with a standard 

deviation of 1.42 dB. For this particular antenna, in light rain between 15 and 30 km, application of ESP expands the 

dynamic range of the depolarization ratio by 4.82 dB, in perfect agreement with the bias of 0.022 dBZ in copolar 

refelctivity observed in Fig. 6B. Increased cross-channel coupling reduces the dynamic range and lowers the 

statistical noise of the depolarization ratio. 

Fig. 7F gives an experimental proof of the concepts exposed in [1] and shows that the Degree of Polarization at 

horizontal transmit DOPH is very robust with respect to antenna cross-channel coupling. 

It should be noted that ESP theory assumes target reflection symmetry and, under such assumption, LDRH_ESP and 

DOPH are one-to-one related, and therefore these two variables contain the same information. 

The ESP experiment permits to conclude that eigenvalue-derived variables (ZHH_ESP ≡ λH1 ,  ZVH_ESP ≡ λH2,   

LDRH_ESP ≡ λH2/λH1, DOPH = (λH1-λH2)/( λH1+λH2)) are robust with respect to antenna cross-channel coupling, 

whereas standard variables (ZHH ≡ <|shh|2>,   ZVH ≡ <|svh|2>,   LDRH ≡ <|svh|2>/<|shh|2>), simply derived from the 

entries of the Coherency matrix, are not.  

Eigenvalue Signal Processing provides an accurate mathematical framework for the quantitative analysis of the bias 

induced by antenna coherent and incoherent cross-channel coupling in polarimetric weather radar variables, and 
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permits the retrieval of polarimetric variables (ZHH and LDRH) unbiased by coherent cross-channel coupling. Any 

biased induced by incoherent cross-channel coupling will still be present in the ESP estimates. 

Experimental analysis of the bias in differential reflectivity ZDR will be deferred to a subsequent paper, where the 

fully polarimetric aspects of Eigenvalue Signal Processing will be analyzed. 

 
 
 
 
  

 
A Standard Cross-polar Reflectivity ZVH (ESP-off) for the cc-off (blue) and cc-on (red) configurations. Cross-channel coupling (cc-on, red curve) 
increases cross-polar reflectivity with respect to the cc-off configuration. This phenomenon is well visible in rain, between 10 and 40 km and less 
visible in the melting band (50-60 km). 
 
  

 
B Standard Cross-polar Reflectivity ZVH (dBZ) for the cc-off configuration as in A (blue curve), superimposed with ESP-corrected cross-polar 
reflectivity (smallest eigenvalue) obtained from the cc-on configuration: ZVH_ESP (red curve). By comparing A and B we can observe that 
Eigenvalue Signal Processing lowers cross-polar refelctivity in rain (10-40 km) and in the melting band (50-60 km) to levels comparable with or 
below the cc-off configuration, as predicted by the theory. Note how ESP increases the overall dynamic range of ZVH. 
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C Cross-polar Correlation coefficient ρxh. The cross-polar correlation coefficient provides a measurement of antenna coherent cross-channel 
coupling. The red curve refers to the cc-on configuration (high ρxh), the blue curve refers to the cc-off configuration (low ρxh).  

 
D  Linear Depolarization Ratio (dB). LDRH is affected by antenna coupling as it is clearly illustrated by the red curve (standard LDRH 
corresponding to cc-on) and blue curve, (standard LDRH corresponding to cc-off). The difference is blurred after 45 km, where more depolarizing 
scatterers (melting band) are present, and the effects of imperfect isolation become less visible. Lack of polarimetric purity decreases the 
polarimetric contrast and makes discrimination more difficult. 
  

 
E  Linear Depolarization Ratio (dB). Blue curve is standard LDRH for the cc-off configuration (same as blue curve in D), red curve is 
ESP-corrected LDR (LDRH_ESP) from the cc-on configuration. Eigenvalue Signal Processing recovers the unbiased LDRH (red curve superimposes 
with the blue curve) and restores the dynamic range corresponding to the cc-off configuration. In general, LDRH_ESP ≤ LDRH. Equality holds for an 
antenna with no coherent cross-channel coupling. 
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F  Degree of Polarization at Horizontal transmit (DOPH). The degree of polarization at horizontal transmit can be expressed in terms of 
the eigenvalues of the Coherency matrix, and is therefore invariant with respect to antenna cross-channel coupling, as clearly indicated by the 
superimposed red and blue curves corresponding to the cc-on and cc-off configurations respectively. 
 
 
Fig. 7 Radial plots for 352˚ azimuth  (between 352˚ and 352.5˚). The radial goes through rain (10-40 km) and then through the melting band 
(> 40km). The word “standard“ refers to standard signal processing (ESP-off), the term “ESP-corrected“ refers to the eigenvalue-derived variables 
(ESP-on). In the panels from A to F, standard polarimetric variables from the cc-off configuration (blue curves) are compared with standard and 
ESP-corrected poarimetric variables from the cc-on configuration (red curves). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 15 20 25 30 35 40 45 50 55 60 65
0.94

0.96

0.98

1

Slant Range (km)

D
O

P_
H



30 
 

IV. CONCLUSIONS 
 

Eigenvalue Signal Processing is a novel polarimetric signal processing procedure that permits the removal of the bias 

induced by antenna coherent cross-polar power in weather radar variables, specifically in reflectivity Z, differential 

reflectivity ZDR and linear depolarization ratio LDR. It is applicable in polarimetric weather radars operating at LDR, 

ATSR and STSR orthogonal modes. It is not applicable at STSR hybrid mode, since it requires orthogonal 

polarization bases. The strength of the approach is that bias correction is effected automatically by means of the 

diagonalization of the Coherency matrices at horizontal and vertical polarizations, and knowledge of the actual amount 

of cross-polar power radiated by the antenna is not necessary. 

ESP is effective for the removal of the biases induced by coherent cross-polar power (coaxially radiated cross-polar 

power) but cannot remove the biases due to incoherent cross-polar power (radiated as a quad of offset lobes). 

Consequently, the effectiveness of the ESP technique is dependent on the spatial structure of cross-polar power and 

therefore varies from antenna to antenna. For example, the improvement in LDR, in the case reported in the present 

paper (Gematronik METEOR 600C), is of about 5 dB. Tests performed at Prosensing Inc. on a Ka-band polarimetric 

radar showed improvements in LDR of about 7 dB (will be reported in an upcoming paper). 

In this paper, the theory of Eigenvalue Signal Processing was experimentally tested at LDR mode with good results 

for copolar reflectivity ZHH, cross-polar reflectivity ZVH, Linear Depolarization Ratio LDRH and Degree of 

Polarization DOPH. In particular, it is demonstrated that ESP can recover the unbiased LDR, named LDRESP, with the 

dynamic range corresponding to an antenna solely affected by incoherent cross-polar power. The robustness with 

respect to coherent antenna cross-channel coupling of the degree of polarization at horizontal transmit DOPH is 

experimentally proven, as theoretically analyzed in [1]. Under the assumption of reflection symmetry, LDRESP and 

DOPH are one-to-one related, and therefore contain the same information. Use of eigenvalue-derived variables is 

recommended to enhance the polarimetric performance of radars at LDR, ATSR and STSR orthogonal modes in 

presence of parabolic reflector antennas with imperfect polarimetric isolation. Ongoing work involves experimental 

testing with planar phased-array antennas and will also consider the fully polarimetric aspects of eigenvalue signal 

processing, specifically the retrieval of antenna unbiased estimates of differential reflectivity ZDR_ESP. 
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