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1. Introduction 

 

The spatial correlation of DSD parameters and rain 

rate at distances varying from <0.5 km to ~5-10 

km is important in understanding their spatial 

variability for example, as related to down-scaling 

methodologies/modeling, to estimate the “point-to-

area” variance when comparing gage/disdrometer 

data to radar retrievals, and application to non-

uniform beam filling (NUBF) “corrections” for 

satellite-borne radar data which necessarily 

represent large pixel sizes (~4 km: TRMM and 

future GPM). It even applies to coarse-scale radar 

estimates, e.g., at long ranges where the radar 

beam becomes broad, or even grid-averaged 

products. While the spatial correlation of R has been 

studied extensively with dense gage networks, 

recently it has been shown that polarimetric radar 

data obtained at high spatial (close ranges<30 km) 

and high time resolution (PPI/RHI scan cycles <40s) 

offers a distinct advantage in estimating the spatial 

correlation function over fixed network of 

gages/disdrometers (Moreau et al. 2009). 

 

On several occasions during the MC3E (Mid-latitude 

Continental Convective Cloud Experiment) campaign 

(Petersen and Jensen, 2012) in northern Oklahoma, 

NASA's S-band polarimetric radar, NPOL, performed 

repeated PPI and RHI scans over six 2D video 

disdrometer (2DVD) sites, located 20 to 30 km from 

the radar. The scans were repeated approximately 

every 40 seconds. We consider here two cases, one 

a rapidly evolving multi-cell rain event (with large 

drops) on 24 April 2011 and the second a 

somewhat more uniform rain event on 11 May 

2011. We utilize these scans to determine the 

spatial correlation functions for the main drop size 

distribution parameters (D0 and NW) as well as 

rainfall rates (R). Also presented are the azimuthal 

variations from the PPI scans and vertical variations 

from RHI scans.  

  

2. NPOL radar  

 

NPOL radar is a research-grade dual-polarized S-

band system. The nominal radar system 

parameters are shown in Table 1. The gate spacing 

is 0.15 km, with typically 1000 gates per beam. 

 

Table 1. NASA NPOL Radar Specifications 

Frequency 2.7-2.9 GHz 

Polarization H,V: simultaneous transmit 
& receive 

Receiver RVP8 

Variables Z, Zdr, φdp, Kdp  
(also LDR*) 

Pulse width 0.8-2 µs 

PRF 250-2000 Hz 

Duty cycle 0.0012 s 

Antenna 8.5 m, prime parabolic,  
no radome 

Gain >44.5 dB 

Pointing accuracy 0.1o 

Beam Width 0.9 o 

Rotation rate 18 o/s max 

* in special LDR mode 

 

 

Figure 1a in Bringi et al. (2013, this conference 
proceedings) shows the map of the campaign 
location. The white triangle in that figure depicts the 
area within which the 2DVDs were sited, and the 
area where the repeated PPI scans were 
performed, viz. over the azimuth range of 245-325 

degrees, at an elevation angle 0.98 deg. The 

repeated RHI scans were performed at an azimuth 



of 283.5 deg, over one of the 2DVD sites, with 

elevation angles ranging from 0-18 degrees. 

 

Figure 1 shows a magnified view of the six 2DVD 

locations overlaid on rain accumulation map from 

the 11 May 2011 event. Note most of the intense 

accumulation occurred SE of the 2DVD network 

due to an initial period of convective cells. 
 

 

Figure 1 . Rain accumulation map from NPOL radar for 

May 11, 2011, 1908-2333UTC. This figure shows the 

PPI azimuths scan range 245-235 deg. Also shown are 

the approximate area where 2DVD were located, and 

the azimuth of the RHI scans (over SN-47 2DVD) at 

283.5 deg. 

 

3. Radar Data Processing  

 

The separation of meteorological echoes from non-

meteorological echoes was based on calculation of 

the standard deviation of Φdp over 10-gates moving 

window, with a threshold of 10o [Bringi et al 2006]. 

Even though the attenuation is generally negligible 

at S-band, the reflectivity was corrected using 

linear Φdp method described by Ryzhkov [2011]: 

 

0.02h dpZ∆ = ∆Φ    (1) 

 

The coefficient of 0.02 is in units of dB/° and is 

applicable for summer-time convection in 

Oklahoma. 

 

Differential reflectivity, Zdr was corrected for rain 

attenuation as follows: 

 

0.0042dr dpZ∆ = ∆Φ    (2) 

 

where the coefficient 0.0042 is in units of dB/°. The 

Kdp parameter was obtained using an iteratively 

filtered Φdp profile as described in Hubbert and 

Bringi (1995), and using an ad hoc “telescoping” 

method where variable number of gates is used, 

depending on the Zh value. 

 

Prior to calculation of rain rate, D0, and log(Nw), the 

hail regions of the precipitation were filtered out, 

using hail signature function HDR with threshold 5 

dB. Additionally, calibration offsets determined 

using the method described in Bringi et al. (2013, 

this conference proceedings) were applied for Zh 

and Zdr.  

 

The  2D-video disdrometer data from 6 units were 

used to derive the retrieval alogrithms for D0, Nw, R 

and liquid water content (LWC). The drop shapes 

from the 80-m fall bridge experiment from Thurai 

et al. (2007) and the canting angle distribution 

from Huang et al. (2008) were used as input to the 

scattering calculations. 

  

The median volume diameter D0 was calculated 

from Zdr measurements as follows (D0 in mm): 

 

    

       (3) 

 

The intercept parameter of the normalized gamma 

drop size distribution Nw (mm-1 m-3) is retrieved as: 

 

    (4) 

 

The liquid water content (LWC) parameter was 

calculated as 



   (5) 

 

The rain rate was calculated using the composite 

algorithm (see Ryzhkov et al. 2005) from input 

parameters Zh, Zdr, Kdp:  

 

   (6) 

 

   (7) 

 

  (8) 

 

 

The block diagram illustrating the composite 

algorithm is given in Figure 6 of Bringi et al. (2013; 

these conference proceedings). 

 

a) Correlation coefficients from RHI scans 

 

Vertical correlation coefficients are calculated from 

the repeated RHI scans. Each of the three 

variables, i.e. NW, D0 and R, denoted by v, was 

interpolated from radar coordinates (elevation, 

distance) to the Cartesian coordinates (x,z) grid. 

The dimensions of each cell of the grid were 

chosen to be 150m x 100m, so that horizontal 

spacing corresponds to that of the original radar 

data. The RHI scans were repeated every 40 s at 

fixed azimuth angle (see Figure 2 which shows the 

time axis and volume V). The selected data begins 

at a height of 0.6 km from the ground (to avoid 

problems due to ground clutter) and ends at the 

bright band height of approximately 2.5 km along 

the vertical, and begins at 15 km range and ends at 

approximately 38 km range (for April 24 data) in 

radial direction. Then for each variable v, the 3-

dimensional volume V was created in Matlab. Each 

volume has dimensions PxHxT, where P is the total 

number of cells in the radial (after gridding referred 

to as the horizontal) direction, H is a total number 

of cells of interpolation grid in vertical direction, 

and T is a total number of RHI scans made by 

radar in the time interval of interest. 

 

The resulting matrix of Pearson’s correlation 

coefficients C has dimensions PxH, each element of 

this matrix was calculated using Matlab function 

corr(), which compares two 1-dimensional arrays of 

data, each one is a time sequence (meaning it 

includes data at specific position (g,h) of all RHI 

scans 1..T of the time interval of interest): 

 

 

 

 

 

 

 

 

 

    (9) 

 

 where g is a cell number in horizontal direction, 

starting from the beginning mark (20 km from the 

NPOL for April 24 case), h is a cell number in 

vertical direction, starting from the lowest height 

mark (0.6km “base” or reference height). At each 

horizontal position, the lowest, or “base” time 

sequence vg 1 1..T  is sequentially compared to each 

time sequence vg h 1..T  above it , to get a column of 

correlation coefficients in the matrix C.  

 

To reduce “noise’, the time sequences were smooth 

using a weighted moving average filter with 

window size 9 (recall RHI scans were repeated 

every 40 s), which corresponds to approximately 

2.5 minutes. Only those elements which were not 

NaN in the time sequences were used. The 

NPOL radar 

t, time  

g, cells  

     h, 

height 

Figure 2: The 3-D volume V (dotted line) after 

interpolation from cylindrical (radar) coordinates into 

Cartesian coordinates and limiting lover altitude to 0.6 

km and upper altitude to 3 km, created for each radar 

variable vg,b,t, and NPOL radar. 



smoothing window selected is somewhat ad hoc 

and a compromise to arrive at ‘reasonable’ Pearson 

correlation coefficients along the vertical direction.  

 

c) Correlation coefficients from PPI scans 

 

To calculate the correlation coefficients for each 

variable v from the repeated PPI scans, the 3-

dimensional volume V was created in Matlab. It has 

dimensions GxBxT (see Figure 3), where G is the 

total number of gates in the radial direction (from 

the start range), B is the total number of beams in 

a single PPI scan, and T is a total number of scans 

in the time interval of interest. 

 

 
  

 

 

 

As before, the resulting matrix of Pearson’s 

correlation coefficients C has dimensions GxB, and 

each element of this matrix was calculated using 

the Matlab function corr(), which compares two 1-

dimensional arrays of data, each one being the 

time sequence (meaning it includes interpolated 

data at specific position (g,b) of all PPI scans 1..T 

of the time interval of interest): 

 

   (10) 

 

where g [1..G] is the number of the gate from the 

starting point, and b [1..B] is the number of the 

beam. Here the “base” time sequence for each 

beam is the closest to the radar in the range of 

interest, and is sequentially compared to those 

further from the radar, thereby creating a column 

of correlation coefficient values in matrix C. 

 

To eliminate any problems due to noise, each time 

sequence was smoothed using a moving average 

filter with the same parameters as for the RHI. 

Only those gates which were not-NaN in both 

“base” and “next-in-range” time sequences were 

compared. 

  

4.  Results and Discussion 

 

a) NPOL scans and 2DVD data 

 

As mentioned earlier, the repeated PPI scans on 

the 11th of May 2011 had covered the six 2DVD 

sites (see also Figure 1). Bringi et al. (2013, these 

conference proceedings), compared Zh, Zdr and R 

determined from the NPOL radar data with the 

simultaneous measurements from all six 2DVDs. 

Very good agreement was found for all three 

quantities, and, furthermore, rain accumulations 

also showed good agreement.  

 

In Figure 4 we show the corresponding time series 

comparisons for D0. For NPOL data-based 

estimation, eq. (2) was used to determine D0 

whilst for 2DVD data based estimation, 1 minute 

DSDs were used for fitting to the normalized 

gamma distribution. Excellent agreement is found 

between the two time series comparisons in all six 

panels. 

 

Figure 5 shows the corresponding comparisons for 

the 24 April 2011 event, which was a much more 

rapidly evolving storm. D0 values can be seen to 

vary rapidly, for example, from 3 mm to less than 1 

mm within 30 minutes for SN36. Even so, the 

agreement between the NPOL derived D0 and the 

2DVD measured D0 are very good, except perhaps 

at the beginning of the storm where drop sorting 

may play a role.  

 

Figure 3:  The 3-D volume V, created for each radar 

variable v, and NPOL radar. 



 

 
 

Figure 4. Time series comparison of D0 for the 11 May 

2011 event from NPOL (red line) and from 2DVD (blue 

line) for the six 2DVD locations (the serial numbers of 

the instruments are shown at the top of each panel). 

 

 

 

 
 

Figure  5: Time series comparison of D0 for the 24 April 

2011 event. 

b) Spatial correlations from PPI scans  

 

For each of the variables D0, log10(NW) and R, we 

compute and plot a 2-D map of correlation 

coefficients which demonstrates the decrease of 

correlation coefficient as a function of range for 

each azimuth angle. Figure 6 shows these plots for 

D0 for the two events. The decrease in the 

correlation coefficients is evident in both cases, but 

for the 24 April 2011 case, the uniformity of this 

decrease across the azimuth angle sector is much 

less compared with the more stratiform rain event 

on May 11, 2011.  

 

From the set of correlation coefficients at a fixed 

range (starting reference range at ~16 km) 

through the angular sector, we construct the CDF 

of the spatial correlations (ρ), and compute the 

10th, 50th (median) and 90th percentile values.  This 

is repeated at range increments of 150 m (radar 

gate spacing). Such an approach gives a “pseudo”-

1D spatial correlation at the same time giving an 

estimate of its cross-beam (azimuthal) variability.   

 

Figures 7, 8, and 9 show the pseudo-1D spatial 

correlation for the three variables, D0, log(NW), and 

R for the May 11 event for the 10th, 50th and 90th 

percentiles. The resulting variations are compared 

with those derived from the 1-minute DSDs from 

the six 2DVDs for May 11, where each circle 

corresponds to one pair of 2DVD (a total 15 

combinations for six 2DVDs). The same correlation 

algorithms were used for NPOL and 2DVD based 

results. The comparisons show good agreement 

between correlation coefficients calculated using 

pairs of disdrometer data and NPOL correlation 

coefficient statistics, especially for D0 (Figure 7). 

The log(Nw) and R correlations from 2DVD fall 

between the 50th and 90th percentiles from radar. 

Note that the rain rate correlation falls off 

significantly ‘faster’ than either D0 or log(NW). 

 



 

 

 

Figure 6. PPI maps of D0 correlation coefficients for 

May 11 (stratiform case, top image) and April 24 

(convective case, bottom image). 

 

 

Figure 7. May 11, stratiform case. Statistical analysis of 

D0, 10%, 50%, 90% percentiles of correlation 

coefficient, compared to correlation coefficients 

calculated from 2DVD data pairs. 

 

 

Figure 8. May 11, stratiform case. Statistical analysis of 

log(Nw) data, 10%, 50%, 90% percentiles of correlation 

coefficient, compared to correlation coefficients 

calculated from 2DVD data pairs. 

 

Figure 9. May 11, stratiform case. Statistical analysis of 

precipitation data, 10%, 50%, 90% percentiles of 

correlation coefficient, compared to correlation 

coefficients calculated from 2DVD data pairs. 

 

Moreau et al (2009) and Bringi et al. (2011) have 

demonstrated that a rapidly-scanned (30-60 sec) 

dual-polarization (DP) radar can provide robust 

estimates of the rain rate spatial correlation.  Here 

the underlying methodology relies on a three-

parameter scaled exponential correlation function 

as used in Gebremichael and Krawjeski, (2004): 

 

ρ(d) = ρ0 exp[ - (d/R0)
F ]   (7) 

 

where d is the distance between measurement 

points, R0 is the decorrelation (1/e) distance, F is a 

shape parameter and ρ0 is the correlation when 



d=0 (i.e. the “nugget” parameter). The Moreau et 

al. and Bringi et al. studies used (7) with DP-

algorithm retrieved rainfall rates to examine error 

structure demonstrated the robust capability of DP-

radar to estimate the ‘areal’ or pixel-scale 

correlation function.  A key conclusion of these 

studies is that in contrast to longer duration 

deployments of gages, DP radar-based rain rates 

can be used to estimate the ‘areal’ correlation 

function at a spatial resolution of 1 km2 or better 

from far fewer rain events due to the much greater 

areal coverage and sample numbers provided.  The 

spatial correlation function for the DSD parameters 

have also been derived from a C-band DP radar by 

Thurai et al. (2012). 

 

In Table 2 we show the fitted parameters: 

 

 

Table 2. Fitting coefficients R0, F for variables D0, 

log(Nw), and precipitation for PPI data of stratiform 

case May 11. 

 R0 F 

D0 15.6397 0.75875 

R 3.9072 1.1951 

Nw 12.9801 0.81136 

 

 

b) Vertical correlations from RHI scans. 

 

To determine vertical correlations, we use the 

repeated RHI scans which were made along an 

azimuth of 283.5 deg as part of the scan sequence. 

For each variable we compute and plot a map of 

correlation coefficients, which demonstrates the 

decrease of correlation coefficient as a function of 

height for each range. In all cases, the reference 

height was set to be 0.6 km in order to avoid 

problems due to ground clutter. Figure 10 shows 

these plots for D0 for the two events. The decrease 

in the correlation coefficients is evident in both 

cases, but for the 24 April 2011 case, the decrease 

is considerably faster compared with the more 

stratiform rain event on May 11, 2011.  

 

 

 

Figure 10. RHI maps of the D0 correlation coefficients 

for May 11 (stratiform case, top image) and April 24 

(convective case, bottom image). Vertical reference 

height is 0.6 km in both cases, May 11 radial reference 

distance is 20 km (and extends to 38 km), April 24 

radial reference distance is 15 km (and extends to 33 

km).  

 

Analogous to the derivation of horizontal 

correlations from the PPI scans, the set of 

correlation coefficients at a fixed height (starting 

reference height at 0.6 km) and along the radial 

direction are used to construct the appropriate CDF 

of the spatial correlations (ρ), and compute the 

10th, 50th (median) and 90th percentile values.  

This is repeated at height increments of 100 m. 

This will yield the “pseudo”-1D height correlation at 

the same time giving an estimate of along-range 

variability.   

Figures 11, 12, and 13 show the pseudo-1D height 

correlation for the three variables, D0, and log(NW) 

for the May 11 and the 24 April events, for the 10th, 

50th and 90th percentiles. Note in both cases, the 

correlation falls off significantly ‘faster’ for the 24 



April event which was predominantly convective 

rain compared with the May 11 event which had 

more stratiform rain. Figure 13 compares the 50th 

percentile curves from the two events to show 

more clearly the differences in the vertical 

correlations as a function of height between the 

convective and the stratiform events. Also included 

are the fitted curves (i.e. fitted to eq. 7, where ‘d’’ 

now represents the height relative to 0.6 km above 

ground level). The fitted coefficients are given in 

Table 3. Note once again the nugget parameter ρ0 

is 1 by definition at the reference height.  

 

 

 

 

Figure 11. Comparing D0 percentiles for May 11 

stratiform case (top) and April 24 convective case 

(bottom). 

 

 

 

 

Figure 12. Comparing log(Nw) percentiles for May 11 

stratiform case (top) and April 24 convective case 

(bottom). 



 

 

 
Figure 13. Comparison of correlation coefficient for 

RHI, for Do, log(Nw), for convective case April 24 and 

stratiform May 11, including fitted data (dotted plots). 

 

 

Table 3. RHI, Fitting coefficients R0, F for variables D0, 

log(Nw),  for RHI data of convective case April 24 and 

stratiform case May 11. 

 R0 F 
D0 convective 2.6477 1.6806 
D0 stratiform 3.7761 1.8003 
log(Nw) convective 1.5554 1.4669 
log(Nw)  stratiform 6.4399 0.8604 

 

 

5.  Summary 

 

Two events during the MC3E campaign have been 

analyzed using NPOL radar data and a network of 

closely-spaced six 2DVD instruments. One event 

(24 April 2011) was strongly convective and was of 

much shorter duration (< 75 min) over the 2DVD 

network, and the second event (11 May 2011) was 

of longer duration (around 4 h) and much more 

widespread, with large areas of stratiform rain.  

 

Retrieval algorithms for D0, NW and R were derived 

using the 2DVD data and applied to NPOL data as a 

validation check. From the repeated PPI scans, with 

40 second cycle time, it was possible to derive the 

spatial (horizontal) correlations for the two events 

at high space-time resolutions (typically several 

minutes after smoothing the time series data and 

at the base spatial resolution of the radar data at 

ranges < 30 km). Thus, the spatial correlations 

from radar may be described as ‘areal’ or ‘pixel’ 

based as opposed to ‘point’ spatial correlations 

derived from rain gages or disdrometers. The 11 

May event showed considerably less azimuthal 

dependence than the 24 April event – as expected. 

Spatial correlations of D0, NW and R were also 

derived from the network of 2DVDs (using 

1-minute time series, but smoothed over 3 min) 

and found to be in good agreement with the NPOL-

based estimates. It was also noted that the rain 

rate correlation falls off significantly ‘faster’ than 

either D0 or log(NW), and that D0 falls off the 

‘slowest’ with respect to distance.  

 

In an analogous manner, vertical correlations were 

derived from the repeated RHI scans, also with a 

cycle time of 40 seconds. In general, the vertical 

correlations fell of faster (with height) for the 

convective event on 24 April compared with the 11 

May stratiform event.  

 

Both the horizontal and the vertical correlations 

were fitted to an exponential decay function with 

two parameters, namely, decorrelation distance 

and shape factor. These fitted values should be of 

use in several applications such as understanding 



the spatial variability of DSD parameters and 

rainfall rates, for example, as related to down-

scaling methodologies/modeling, to estimate the 

“point-to-area” variance when comparing 

gage/disdrometer data to radar retrievals, and 

application to non-uniform beam filling (NUBF) 

“corrections” for satellite-borne radar data which 

necessarily represent large pixel sizes (~4 km: 

TRMM and future GPM). It even applies to coarse-

scale radar estimates, e.g., at long ranges where 

the radar beam becomes broad, or even grid-

averaged products. In many of the above 

applications the assumptions of isotropy of the 

spatial correlation function as well as stationarity of 

the underlying process needs to be invoked which 

have yet to be addressed.  
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