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1. INTRODUCTION1 

 Currently, the weather surveillance radar-1988 
Doppler (WSR-88D), operated by the National Weather 
Service, is one of the key providers of weather 
information for the entire nation.  As such, the WSR-88D 
network is constantly evolving. The most recent and 
significant addition to the network is the dual-
polarization capability. Dual polarization introduces new 
information that improves the abilities of forecasters and 
algorithms to distinguish between different types of 
precipitation (e.g., rain, hail) and non-weather scatterers 
(e.g., insects, ground clutter). 
 In the recent years, phased array radar (PAR) 
technology has been proposed as foundation for 
development of the next generation of weather 
surveillance systems. This technology supports more 
flexible scanning strategies than radars using 
mechanically steered antennas and has the potential to 
provide reduced data update times. Advantages of 
using PAR technology for weather observations are 
discussed by Zrnić at al. (2007), and experiments 
demonstrating these using a single-polarized PAR are 
conducted at the National Severe Storms Lab (e.g., 
Heinselman and Torres 2011). PAR technology has 
been principally developed to advance point target 
detection and tracking; hence, dual-polarization has not 
been widely implemented on such systems. It is clear, 
though, that weather radars of the next generation will 
have to combine PAR and dual-polarization technology 
to meet and exceed the current weather surveillance 
capabilities. 
 Generally, implementation of dual-polarization 
for weather applications imposes strict requirements on 
antenna design and fabrication. This is due to the nature 
of dual-polarization measurements which require 
considerable isolation between horizontal and vertical 
channels. Namely, the close proximity of hardware and 
imperfections in fabrication cause a portion of the 
energy transmitted in the horizontal (H) channel to leak 
into the vertical (V) channel, and vice versa. In addition, 
the same effect is present on reception too. The result is 
that the measured voltages are contaminated by 
leakage between the H and V channels. The dual-
polarization measurement that are susceptible to this 
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problem are the differential reflectivity (ZDR) because it is 
computed from the ratio of returned powers in the two 
orthogonal channels and the copolar correlation 
coefficient. Due to the nature of planar phased arrays, 
coupling through hardware (especially the antenna) is 
even more prominent compared to a reflector antenna. 
Additionally, a PAR can form thousands of beams, each 
of which may have varying gain, beam width, and 
polarimetric characteristics. Furthermore, in some 
architectures, non-orthogonal orientation of intended H 
and V fields occurs when the beam is pointed in 
directions that are not perpendicular to the array (i.e., 
away from the principal planes) (Zhang et al. 2009). To 
overcome this particular problem Zhang et al. (2011) 
proposed a cylindrical design whereby the beam is 
steered in azimuth by commuting illumination of the 
radiators so that beams are always in the vertical 
principal plane. Another alternative is a system where 
beams are electronically scanned only in the orthogonal 
principal planes (Knapp et al. 2011). Nonetheless, even 
with these solutions cross-polar coupling through the 
radar antenna and surrounding microwave circuitry 
remain and must be dealt with. 
 Two dual-polarization transmission schemes have 
been proposed. In the AHV mode, H and V fields are 
alternately transmitted, whereas in the SHV mode fields 
are transmitted simultaneously. For the same cross-
polar isolation, the AHV mode has the advantage that 
the ZDR bias is much smaller than in the SHV mode 
(Sachidananda and Zrnić 1985)). Unfortunately, the 
AHV mode of operation presents numerous other 
challenges. The most important is that it is not 
compatible with the current mode in which the dual-
polarized WSR-88D operates (i.e., SHV); hence, 
switching to the AHV mode would require significant 
changes in the existing algorithms. Even more, 
obtaining the dual-polarization variables with required 
quality, while maintaining unambiguous range of ~300 
km, may be more challenging. On the other hand, if the 
SHV is used for the polarimetric PAR (PPAR) the 
current algorithms can be seamlessly transferred to the 
new hardware. Further, advantages of SHV mode are: 
1) produces estimates with significant lower errors for 
the same scan rates, 2) the differential phase is 
measured within a 360° interval, 3) the correlation 
coefficient |ρhv(0)| can be measured directly (i.e., no 
need to assume a correlation model), 4) there are no 
compromises in the performance of the ground clutter 

7B.1 



filter. This compels us to search for alternate ways to 
improve cross-polar isolation that would suit the PPAR 
design and enable the SHV mode with satisfactory ZDR 
bias.  
 Orthogonal coding in the SHV mode to enable 
cross-polar measurements was proposed by Giuli et al. 
(1993) and after that by Stagliano et al. (2006) without 
specifying the code details (see also Stagliano et al. 
2009) in the latter case. Chandrasekhar and Bharadwaj 
(2009) proposed to reduce the cross-polar isolation by 
implementing phase changes on transmission from 
pulse to pulse using Welsh-Hadamard codes. The 
scheme operates by shifting the spectrum of one of the 
signals (H or V) by half the Nyquist interval so that after 
it couples with the other signal it can be removed by 
filtering. Also, a scheme is proposed by Zrnić et al. 
(2013) whereby modulations similar to Sachidananda 
and Zrnić (1986) are used to achieve the same goal. 
Both schemes can be successful in suppressing 
contaminants even without the use of filtering (at the 
expense of a moderate increase in variance). Clearly, 
both schemes require that the Nyquist interval be large 
enough so that the spectra of two signals do not overlap 
(for the most part) and filtering can succeed in removing 
unwanted cross-polar signals. However, in the current 
implementation on the WSR-88D, the polarimetric 
variables at the lowest two (sometimes three) elevation 
angles are obtained in the SHV mode using long pulse 
repetition time (over 3 ms) so that range ambiguities do 
not occur. Such long repetition times result in small 
Nyquist velocities which prevent successful filtering of 
the contaminant signal, which may render bias removal 
less effective in such cases. Additionally, it is likely that 
the application of phase codes on a pulse to pulse basis 
(interpulse coding) may require minimum number of 
pulses per dwell to be effective. Because it is likely that 
the PPAR will be designed for weather observation as 
well as aircraft detection and tracking (Weadon et al. 
2009) it will have to share resources between these two 
roles.  This will impose stringent requirements on the 
dwell times allowed for weathers scans. Hence, the 
number of pulses collected per dwell may not be 
sufficient for effective bias removal using the interpulse 
coding; rather, sophisticated schemes may be 
developed that will maintain the existing quality of 
weather products but use much shorter dwell times by 
decreasing the number of pulses per dwell. 

2. THEORETICAL MODEL 

The backscattering properties of a single 
hydrometeor can be described by its backscattering 
matrix S which relates the backscattered electric filed Eb 
at the antenna to the incident one Ei (Doviak and Zrnić 
2001) 
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where h denotes the horizontal (H) and v the vertical (V) 
polarization. The presence of distributed scatterers 
(e.g., precipitation) between the resolution volume and 
radar may alter the transmitted electric wave as it 
propagates through it. This is known as propagation 
effect and is usually quantified by the transmission 
matrix T. Assuming there is no depolarization on 
propagation the differential phase shift (ΦDP) is the 
dominant effect and for linear orthogonal polarization T 
is 
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Additionally, the practical antennas and the associated 
microwave circuitry introduce change in polarization 
which are described by the matrix F. These are 
analyzed by Zrnić et al. (2010) who give this matrix as 
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where it is assumed that the pattern functions Fij (where 
i,j designate polarization h or v) and β (differential phase 
between the H and V on transmission) are constant. 
The one way pattern functions Fij (where i,j designate 
polarization h or v) are not normalized but contain the 
peak power gain gij so that 

( , ) ( , )F g fθ φ θ φ=ij ij ij   (4) 

where fij(θ, φ) is the normalized antenna pattern. Fhv is 
proportional to the H radiated electric field if the V 
channel is excited, and vice versa for Fvh. Fhh and Fvv 
are assumed to be real functions (i.e., have zero 
reference phase), but Fhv, Fvh are complex (i.e., Fhv and 
Fvh have phases γhv and γvh relative to the phase of 
copolar H). Constants of proportionality that would make 
this equation dimensionally correct, and the arguments 
of Fij and sij, are omitted to shorten the notation; these 
omissions have no effect on the results. 

 Let us denote the samples of a received phase 
coded signals from the sequences of simultaneously 
transmitted pulses (spaced in time by Ts), in the 
horizontal (H) and the vertical (V) channels, as Vh

c(m) 
and Vv

c(m) where m is the sequence index. The phase  
codes αh(m) and αv(m) are imposed on the pulses 
generated at the radar transmitter system (Klystron, 
TWT, or solid state). As these pulses propagate through 
media they illuminate scatterers and a portion of the 
energy is returned towards the radar. Returned energy, 
at time t (measured from the start of the m-th 



transmission), from a volume in the direction (θ, φ) 
located at distance r from the radar, creates voltage 
increments δVh(t, r) and δVv(t, r) at the antenna output. 
Hence, δVh(t,r) and δVv(t,r) can be viewed as returns at 
time t from a vanishingly thin spherical shell located in 
the spherical direction determined by angles θ, φ, at 
distance r from the radar, weighted by the transmitted 
pulse and the antenna radiation pattern f(θ, φ). We carry 
on further analysis assuming the following: 1) radar 
returns are produced by depolarizing scatterers (but 
mean canting angles of scatterers on propagation are 
zero) so the off-diagonal terms of the backscattering 
matrix are not zero, 2) there is a differential phase β 
between the transmitted H and V copolar radiation 
fields, and 3) differential attenuation along the path of 
propagation can, for most observations at 10-cm 
wavelengths, be neglected, but the differential phase 
(ΦDP) cannot be ignored. Next, we use the extended 
notation from Zrnić et al. (2010) to express the 
incremental voltages in the H and V channels generated 
by the scatterers. 

 Next, using the notation presented so far we 
express coupling due to antenna cross polar pattern and 
the scattering media. The results are applicable to other 
couplings as well; hence what follows is very general. 
Thus, the horizontally and vertically polarized signals 
received from a hydrometeor at a time mTs are (Zrnić et 
al. (2010, Eq.3) 

( )
( )

( )

h
i

v

2
hh vh hh hv

hv vv
2

vh vv

hh hv

vh vv

,

,

DP
DP

DP

h

h

t

jj

j

j

j

V t r
V E

V t r

F F s e s e
F F

s e s

eF F
F F e

α

β α

δ

δ

Φ
−− Φ

Φ
−

+

 
  ≡ = =
  

 
  
  × 
  
  
          

 

F SF

 (5) 

where it is assumed that the pattern functions Fij (where 
i,j designate polarization h or v) and β (differential phase 
between the H and V on transmission) are constant and 
all other variables are functions of m. In the interest of 
compactness, we merge the ΦDP with the scatterer’s 
backscatter differential phase in following 
considerations. To describe the effects of depolarization 
by the scattering media we have the following defined 
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where LDR is the linear depolarization ratio (Doviak and 
Zrnić 2006), and ρxh and ρxv are co-cross-polar 
correlation coefficients (Ryzhkov 2001). The effects of 
the phase difference due to differential phase shifts 
within the receiver are neglected as they have no 
bearing on the results reported herein. The voltage 
increments δVh and δVv consist of contributions by 
scatterers from the direction (θ, φ). In azimuth, the 
function F (Doviak and Zrnić 2006; eq.8.43a) weighting 
the contributions of each scatterer has a random phase 
ψ(θ, φ) uncorrelated from one solid angle dΩ to the next, 
and is proportional to the intensity and phase of the 
radiation pattern at angles θ, φ. The received voltages 
are 
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After decoding and assuming reciprocity (i.e., shv = svh) 
we get 
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Now let us consider power estimates computed as 
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where δPh(m) and δPv(m) are bias inducing terms in the 
H and V power estimates). These are derived in 
APPENDIX A as 
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where Ac(m) and Bc(m) (c is h or v) are defined in 
APPENDIX A. Note that the phase codes bear no 
impact on the Ah(m) and Av(m) in (10). These, however, 
are not the main contributors to the bias because the 
only terms where Fhh and Fvv appear on the third order 
are scaled by the linear depolarization ratio (LDR), 
imposed by the depolarized scatterers, which takes 
upon values of -25 dB or smaller (Ryzhkov 2001). 
 Next, we consider the expected value of the overall 
power sum as 

( )
−

=

= ∑
1

0

1ˆ ˆ
M

c c
m

P P m
M

  (11) 

where c is h or v. Derivation of the result when two 
consecutive terms in (11) are summed is given in 
APPENDIX B. It shows that if 
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the bias terms that are affected by the phase codes, in 
both H and V, cancel each other. We then have 
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Simple solution is to have 
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where α can be any angle. These conditions are met if 
the phases on transmission are 
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Where φ and η can take upon any values between -π 
and π. Hence, it is possible to impose the varying phase 
on the transmitted pulses without upsetting the function 
of the phase codes. Clearly, if M is even all bias terms 
cancel but if M is odd one still remains. To account for 
the latter case we can set the following requirement 
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We can achieve this by setting the phase of the first 
three transmissions so that 

( ) ( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

cos 0 0 cos 1 1

cos 2 2 0

sin 0 0 sin 1 1

sin 2 2 0

v h v h

v h

v h v h

v h

α α α α

α α

α α α α

α α

− + − +

− =

− + − +

− =

   (17) 

One possible solution is 
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 Examination of the cross-correlation computation 
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is given in APPENDIX C. It shows that while phase 
codes are effective in removing cross-polar 
contaminants produced by the radar hardware, the 
significant bias terms caused by depolarizing media still 
remain. 

3. ESTIMATION QUALITY ASSESSMENT 

 For simplicity we assume the uniform beam filling, 
hence scc(m) (where c is either h or v) is not function of 
Ω. We also assume the shapes of the copolar and 
cross-polar patterns to differ only by phase (i.e., Fhh = 
Fvv = |Fhv| = |Fvh|). Such assumption certainly holds for 
coupling through radar hardware and in the case of 
coupling through radiation patterns it assumes the worst 
possible case. This is because the cross-polar patterns 
can have shapes different than the copolar ones (e.g., 
four-lobed pattern given in Zrnić et al. 2010), in which 
case the cross-polar coupling is much less detrimental 
than in the assumed case. Next, we apply normalization 
so that 
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Given the assumption that all the radiation patterns are 
the same in shape and that cross-polar isolation is the 
same in H and V we define the cross-polar suppression 
(CPS) on transmission as 
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which is the ratio similar to the ratios presented in 
Figure 5. of Zrnić et al. 2010. Given these assumptions 
we can represent 
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which allows us to integrate along Ω as 
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where δP’h(m) and δP’v(m) are given in APPENDIX A. 
This approach provides for investigating the effects of 
cross-coupling where we generate shh(m) and svv(m) 
using Monte Carlo simulations (Zrnić 1975, Torres 
2001). Explanation of how shv(m) is simulated is given in 
APPENDIX D. Note that because we are investigating 
the properties of differential reflectivity which is the ratio 
of powers from H and V we can set g to one for the 
purposes of simulation. 
 Let us examine the differential reflectivity. It is 
computed as 
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where superscript NC denotes the estimates unbiased 
by the cross-coupling (i.e., Fhv = Fvh = 0) and 
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where Nh and Nv are noise powers in H and V channels. 
After developing into Taylor series of the first order and 
taking mathematical expectations it becomes 
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where the first term stands for the differential reflectivity 
when no cross-coupling is present and the rest of the 
terms contribute to the bias. Using expressions from 
APPENDIX A we get for the expected bias when no 
phase coding is applied and the terms A’h(m) and A’v(m) 
are ignored 
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If we take that there is no depolarization in the media 
(i.e., LDR = 0) the formula becomes equivalent to eq. 13 
in Zrnić et al. 2010. As pointed out in Zrnić et al. (2010) 
the bias in ZDR is dependent on the values of β, γhv, and 
γvh. The maximum positive bias occurs if 
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 .  (28) 

In general, these conditions are met if 

γ β
γ π β

π Φβ

= −

= +

+
= −

2

hv

vh

DP

.   (29) 

If cross-polar patterns have four axis symmetric 
principal lobes of equal magnitude then γhv = γvh = γ 
(Zrnić et al. 2010) and the maximum positive bias 
occurs for 

πγ

πβ

Φ

=

= −

=

2

2
0DP

 .   (30) 

which is the same result as obtained by Zrnić et al. 
2010. Bias was also examined using simulations. Using 
simulations ZDR biases were examined for all 
combinations of β and γ when depolarization in the 
scattering media is present and when it is not (in the 
latter case LDR = -Inf dB). The bias is computed as 
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where K is the number of simulation runs, and k 
designator is used to denote the simulated sample 
number. Note that the bias computed in (31) is the 
additional bias added to the inherent ZDR estimator bias. 
The results for the non-phased coded data when CPS is 
40 dB and γhv = γvh = γ are presented in Figure 1. Cross 
Polar suppression of 40 dB is achievable in radars with 
parabolic dish antennas (e.g., WSR-88D, Zrnić et al. 
2010). Figure 1 (a) shows the bias as function of ZDR for 
the combination of phases in (30) when depolarization 
by scatterers is presents and when it is not. It 
demonstrates that, for the assumed conditions, 
differential reflectivity bias can exceed the preferable 
value of 0.1 dB in the worst case. It is interesting to note 
that the presence of depolarization by the media 
reduces the bias somewhat in this particular case. This 
effect is produced by the depolarization terms in (27) 
whose overall bias is negative for the given conditions. 
In general though, the overall bias increases 
significantly in the presence of depolarization by 
scatterers as can be seen from Figure 1 (d).  Moreover, 
Figure 1 (b) shows that the bias exceeds 0.1 dB for 
most of the ΦDP values if γ = π/2 and β = -π/2. 
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Figure 1. Differential reflectivity bias for simulated data 
with M = 16, SNR = 50 dB, for CPS of 40 dB. Biases are 

shown for a range (a) of ZDR values (results of 
perturbation are given in circles), (b) of ΦDP values 

(results of perturbation are given in circles), (c) of γ  and 
β when ΦDP = 0º and LDR = 0, and (d) of γ  and β 

when ΦDP = 0º and LDR = -25 dB. 

 Next, we examine the effectiveness of the phase 
codes. Since the codes are designed to cancel the bias 
terms caused by the Bh(m) and Bv(m) the bias is 
primarily induced by the Ah(m) and Av(m) terms; hence, 
the bias is not dependent on β. For the case when no 
depolarization in the media is present the bias can be 
expressed as 
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From the expression (32) it can be inferred that the 
largest positive bias occurs when 
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This set of equations is over determined so such case 
can never take place.  However, the last two terms in 
(32) add up constructively if 

π Φγ

Φγ

−
=

= −

2

2

DP
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   (34) 

Thus, in Figure 2 (a) and (b) bias is shown for a range of 
differential reflectivity values for CPS of 20 and 25 dB; 
the first suppression is easily achievable in phased 
arrays whereas latter requires use of sophisticated 
designs. It can be observed that points when the largest 
bias occurs is for ΦDP = 0º. When CPS is 20 dB, the 0.1 
dB bias requirement is not met for a large range of ΦDP 
values. On the contrary, when CPS is 25 dB the bias 
requirement is satisfied along the entire ΦDP range when 
LDR is zero. This implies that the cross-polar 
suppression of at least -25 dB is preferable. 
Consequently, the bias is given for a range of ZDR 
values in Figure 2 (c) for CPS of 25 dB. 
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Figure 2. Differential reflectivity bias for phase coded 
simulated data with M = 16, SNR = 50 dB, ZDR = 0 dB, 

ΦDP = 0° for different values of LDR and CPS. 

 To examine how bias changes with number of 
samples it is computed for range of M values and shown 
in Figure 3. Figure 3 (a) shows bias obtained 
simulations and theoretical analysis when only codes in 
(15) are used. As expected, bias significantly increases 
for odd M, but generally bias differences between even 
and odd number of samples declines as M increases. 
Figure 3 (b) is obtained setting phases of the first three 
samples as in (18). This equalizes the performance of 
phase codes for even and odd number of samples. 
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Figure 3. ZDR bias for different values of M. Dashed 
lines are produced using simulations and circles are 
obtained using perturbation analysis. (a) Only phase 
codes for even number of samples are applied. (b) 

Phase codes for both even and odd number samples 
are applied. 

 Next, we examine the standard deviations of 
differential reflectivity. Assessment of variance using 
perturbation analysis is given in APPENDIX E. The 
expression for variance assuming no phase coding and 
LDR of zero is 
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From (35) it is seen that the maximal additional 
variance, induced by the cross-polar contaminants, is 
when 

γ β
γ β

= −

=
hv

vh

  (36) 

 Additionally, variances are also computed using 
simulations as 
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for various values of LDR and CPS. Standard deviations 
are obtained from those as 

( ) ( )=ˆ ˆ
DR DRSD Z Var Z .  (38) 

Results of the standard deviations estimation are shown 
in Figure 4. Figure 4 (a) presents results obtained using 
simulations and perturbations analysis (results of the 
latter are shown in circles); standard deviation of ZNC

DR  
is computed using expression from Melnikov and (35) is 
used to add variance induced by the cross-coupling 
contaminants. These demonstrate that even if CPS = 25 
dB the cross-coupling terms add only about 10% to the 
overall standard deviation. Moreover, the phase coding 
reduces the standard deviation and makes it almost 
equal to the case when no cross-coupling terms are 
present. This can be attributed to the fact that the phase 
codes are designed to minimize the effect of the terms 
that contribute most to the ZDR bias and this function 
extends to variance as well; hence, the terms multiplied 
by 

 

 are minimized. Figure 4 (b) and (c) show that 
standard deviations of the phase coded data remain 
rather stable throughout the entire range of phase 
values. 
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Figure 4. Standard deviations for data with M = 16, 
SNR = 50 dB, and CPS = 25 dB. (a) The phase coded 

data compared to the non-phase coded and non-
contaminated data (perturbation results are shown in 

circles). (b) and (c) Simulations for a range of γhv and γvh 
values and ZDR = 0 dB, ΦDP = 0°. 

 Next, we examine biases on a radial of real time-
series collected by the WSR-88D research radar in 
Norman, OK. The SNR profile is shown in Figure 5 (a) 
and the original ZDR estimates in Figure 5 (b). Also, 

differential phase was artificially set to 0º at the 
beginning of the interval. To simulate coupling, original 
time-series are mixed as in (7) where we took that Fhh = 
Fvv = 1 and Fhv = Fvh in case when CPS is 40 dB. We set 
γhv = γvh = γ  to 90° because (30) shows that is where the 
bias peak occurs for ΦDP of zero. In case when CPS is 
25 dB, we set |Fhv| = |Fvh| and γhv = 90º, γvh = 0º as the 
maximum bias occurs for those values if ΦDP = 0º. In 
both cases we set β = 0º. 
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Figure 5. Assessment of ZDR bias using real time-series 
for M = 16. 

 Next test is similar to previous except that we take 
the time-series to be the same in both channels. Results 
are presented in Figure 6.  

 
Figure 6. Assessment of ZDR bias using real time-series 

only from H channel for M = 17. 

 Next we assess the behavior of the correlation 
coefficient estimates using simulation. Results are 
presented in Figure 7. Figure 7 (a) shows that the bias 
is within the acceptable limits of 0.01 when phase 
coding is not applied. Unfortunately, Figure 7 (b) implies 
that if phase coding is applied the bias exceeds that limit 
for a range of γhv, and γvh values. Phase coding does 
seem to reduce overall variance somewhat compared to 
the non-phase coded data. For reference, the bias and 
standard deviation of the non-coupled data are 5.8×10-5 
and 6.2×10-3. 
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Figure 7. Correlation coefficient biases and standard 
deviations for non-phase coded and phase coded 

simulated data with M = 16, SNR = 50 dB, σv = 2 m s-1, 
ZDR = 0 dB, |ρhv(0)| = 0.99, ΦDP = 0°, and LDR = -Inf dB. 

4. SUMMARY 

In this work the use of pulse to pulse phase codes 
to improve the cross-polar isolation was investigated. It 
is shown that such phase codes have the potential to 
reduce the cross-polar contamination and thus reduce 
the differential reflectivity bias so that it falls within 
acceptable limits. At the same time, these codes have 
no adverse effects on the standard deviations of the 
differential reflectivity. It is concluded, however, that 
these phase codes can have adverse effect on the 
correlation coefficient bias by increasing it to values that 
are beyond the acceptable ones. 
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APPENDIX A 

 In this appendix we derive the expressions for 
δPh(m) and δPv(m) (i.e., bias inducing terms in the H 
and V power estimates) shown in (9). These can be 
represented as 
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Without the loss of generality we can assume that 
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Then, we represent the bias terms as 
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Note that the phase codes bear no impact on the Ah(m) 
and Av(m) in (A.5) and that these are caused by the 
depolarization in the scattering media. The expected 
values of the terms in are 
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 In view of assumptions we obtain after integrating (A.5) 
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where the expected values of the terms in are 
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APPENDIX B 

 Let’s see what happens when we sum two 
consecutive terms in (11). Note that the mathematical 
expectations of Ac(m) and Bc(m) (c is h or v) are the 
same for every m because we assume them to be wide-
sense stationary random variables. We get 
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Hence, in H the bias inducing term, affected by the 
phase codes, can be represented as 
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where 

( )( )argB hB mα =    (B.3) 

Similar can be shown for V as 
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where 

( )( )argB vB mα =   (B.5) 

APPENDIX C 

 The product of samples from H and V is 
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where we assume exp(jψh(ϴ, φ)) = exp(jψv(ϴ, φ)). Now, 

( ){
( ) ( )
( ) ( )

( ) ( )

( )

( )

( )

* *

2 2 *
hh vv hh vv

2 *
hh vv hv hh hv

2 * *
vv hh vh vv hv

23 3 *
hh hv hh hh vv hh hv

2 *
hh vv vh hh vv

22 *
hh vv vh hv

23 * 3
vv vh vv vv hh

( ) ( ) ( 1) ( 1)

2 ( )

2

2

( )

( )

2

h v h v

j

j

j

V m V m V m V m

F F s m s m e

F F F e s m s m

F F F e s m s m

F F s m F F s m s m

F F F s m s m

F F F s m

F F s m F F s

β

β

β

Ω

+ + +

+

+

+

 + +

+

+

+

∫



( ) ( )

( )

( )
( ) ( )( )

( )

( ) ( ){
( ) ( ) }

( ) ( )( )}

*
vv hv

2 * *
vv hh hv hh vv

22
vv hh hv hv

( ) ( ) ( 1) ( 1)

22 2
hh vv hv

2 * *
vv hh vh vv hv

2 * *
hh vv hv hh hv

2 ( ) ( ) 2 ( 1) ( 1)

( )

2

2Re

h v h v

h v h v

j m m j m m

j

j m m j m m

m s m

F F F s m s m

F F F s m

e e

F F s m

F F F s m s m

F F F s m s m e

e e d

α α α α

β

α α α α

− + − +

−

− + − +

+

+

 ×

+ +

 +

+

 ×

+ Ω

(C.2) 

If any of the conditions in (15)  is met then 
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This produces 
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APPENDIX D 
 To simulate samples of shv(m) we follow similar 
procedure as in Torres 2001. We have samples of 
shh(m) that are produced as 
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Where X(m) are unit power Gaussian distributed 
samples with desired autocorrelation in sample-time. 
Next, we need to construct shv(m) so that 
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To achieve this we construct time series X(m) with the 
same sample-time correlation as shh(m) and unit power. 
Then 
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where A and B are complex constants to be determined 
and Y(m) are unit power Gaussian distributed samples 
with desired autocorrelation in sample-time independent 
of X(m). 
 To obtain the desired autocorrelation in sample-
time we have 
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Clearly, one requirement is that 
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Thus, 

( )
Φ

ρ=
2

2
hh

DPj

xhA e s m LDR  (D.7) 

Next, we solve for |B| as 

( ) ( )ρ= −
2 2

hh 1 xhB LDR s m   (D.8) 

Note that the argument (phase) of B is not constrained 
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Give n that svv(m) is simulated as 
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where X(m) are unit power Gaussian distributed 
samples with desired autocorrelation in sample-time 
independent of X(m) and Y(m).The we get for ρxv 
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APPENDIX E 

 In this appendix we study the variance of ZDR. First 
we take 
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 (E.1) 

where we consider only the terms that significantly 
contribute to the result. Given that 

( )

2 2ˆ ˆ

ˆ ˆ ˆ ˆ20        
ˆ ˆln 10

NC
DR DR

NC NC
DR h DR v

NC NC
h v

Z Z

Z P Z P

S S

δ δ

≈ +

 
 −
 
 

 (E.2) 

We write 
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Next we represent 
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By plugging into we get 
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Using development into Taylor series we can write 
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Then, after finding all the expected values we arrive at 
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for the variance when no phase coding is applied. 
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