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Abstract

Solid-state weather radars generally require pulse compres-
sion and blind range mitigation waveforms in order to gain
sufficient sensitivity due to the low peak power of transmit-
ters and mitigate the near-range data loss due to the long
transmit duty cycle, respectively. At the Advanced Radar
Research Center (ARRC) of the University of Oklahoma, we
have developed a solid-state polarimetric weather radar, the
PX-1000, which uses a long waveform for far range obser-
vations and short waveform for blind range filling. It should
be emphasized here that we typically use a virtually non-
tapered waveform, which fully utilizes the capacity of the
solid-state transmitters. One of the consequences of data
acquisition using long and short waveforms is the abrupt
change of signal-to-noise ratio (SNR) at the transition range
from short waveform to long waveform. This effect is mani-
fested into a discontinuity of cross-pol correlation coefficients
(ρhv) in range, which makes subsequent data processing,
e.g., data interpretation, automated hydrometeor classifica-
tion and data assimilation in numerical weather prediction
models, more challenging. The multi-mag moment proces-
sor, recently developed in the ARRC, is less sensitive to SNR
due to its underlying concept of fitting the auto- and cross-
correlation estimates to the Gaussian functions without using
the auto-correlation estimates at lag-0. In addition, this algo-
rithm does not depend on noise estimation because the use
of lag-0 auto-correlation is avoided. In this work, we focus on
the ρhv estimation. We found that the multi-lag moment pro-
cessor provides superior results in ρhv estimates compared
to the canonical method, especially when the SNR is mod-
erate to low (< 20 dB), which is most typical for low-power
solid-state weather radars. Several cases will be presented
to illustrate the impacts on ρhv.

1. BACKGROUND

Correlation coefficient ρhv is a measure of the degrees of
similarity between the two polarizations, which is related to
size, shape and composition of hydrometeors. It is one of the
key components in the hydrometeor classification algorithm
(HCA) (Park et al., 2009; Zrnić et al., 2001), which is a fuzzy-
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logic based method that uses 6 radar variables, i.e., (1) re-
flectivity from the horizontal channel Z, (2) differential reflec-
tivity, (3) cross-correlation coefficient, (4) specific differential
phase KDP, (5) a texture SD(Z) derived from Z, and (6)
a texture SD(φDP) derived from φDP, to produce hydrome-
teor classes. It has been reported that ρhv can be used to
predict signal quality and gauge hail size (Balakrishnan and
Zrnić, 1990). Correlation coefficient ρhv can also be used
to discriminate rain and wet snow as signal correlation de-
creases when particles are wet or irregular in shape (Straka
et al., 2000). That is, one can get an accurate assessment
of whether the precipitation contains wet snow by inspecting
the ρhv values as wet snow typically has ρhv that are lower
than that of rain. The ρhv estimate also plays an important
role in methods to distinguish meteorological against non-
meteorological echoes, e.g., birds, insects and smoke (Tang
et al., 2013).

At X-band, the output power produced by solid-state ampli-
fiers is still relatively low, on the orders of 100’s of watts,
and, thus, the returned signals often have moderate to low
SNR. As ρhv degrades with decreasing SNR (Bringi and
Chandrasekar, 2001), one can expect that the quality of ρhv
is widely degraded on an X-band solid-state weather radar.
The primary motivation of this work is to explore the impacts
of the multilag moment processor, which promises improved
performance at low SNR regimes that are typically found with
solid-state weather radars.

1.1. Signal Processing Method

Using the PX-1000, an ARRC in-house-developed 100-W
solid-state X-band polarimetric weather radar, raw time se-
ries data consisting of digitized in-phase and quadrature (IQ)
components are used to derive radar moments and polari-
metric variables. The radar uses pulse compression with a
time-frequency multiplexed (TFM) waveform to eliminate the
blind range due to the use of long transmit cycle (Cheong
et al., 2013). The transmit cycle is approximately 10 km in
the results that will be presented in this article. Briefly, the
transmit waveform is a time multiplex of a long waveform and
a short waveform, i.e., a temporal concatenation. The short
waveform is appended to the end of the long waveform in this
order in order for the technique to be viable as the total blind
range is the sum of the two pulse lengths. The two wave-
forms use two distinct bands that do not overlap each other.
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One can also think of the short waveform as a second virtual
radar operating synchronously with a slight delay (duration
of the long pulse). The IQ time series are de-multiplexed on
the signal processor through two match filters that separate
the signals from each other.

Figure 1 shows the theoretical radar sensitivity in range with
the minimum detectable signal (MDS) assumed at SNR at
0 dB. The two sensitivity curves of the PX-1000 are shown
at ranges where they are applicable. A CASA IP-1 X-band
(McLaughlin et al., 2009; Brotzge et al., 2006) is included
for reference as they have numerous system specifications
in common. As indicated in the chart, the abrupt change in
sensitivity of 15 dB at 10 km can be expected for the radar
reflectivity derived from the TFM waveform of these sub-
waveforms. The long waveform (67µs) has a blind range
of 10 km and it is filled with the short waveform (2µs). Since
mid-2012, we have developed an optimized frequency mod-
ulation (OFM) scheme, which is a non-linear frequency mod-
ulation derived from an iterative optimization algorithm (Kur-
dzo et al., 2014), and it has been applied to the TFM wave-
form. Figure 1 shows the updated sensitivity profile. Due to
the limitations of receiver bandwidth, we are unable to match
the range resolution of the two waveforms but they are close
and do not impede the assessments drawn in this study. As
one can readily see from the chart, the radar is capable of
observing rain (> 20 dBZ) up to 60 km away. It should be
noted, however, that the SNR of typical precipitation events
at 20 dBZ just barely exceed the MDS threshold at the outer
ranges, i.e., 10 km of the short pulse and 60 km of the long
pulse, along with the just mentioned abrupt change.
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Figure 1: Radar sensitivity of the PX-1000.

1.2. Multilag Estimator

In this study, the multilag moment estimator (Lei et al., 2012)
was implemented on the real-time signal processor of the
PX-1000 radar. The algorithm uses a Gaussian model as a
fitting function to the autocorrelation function, which can be
described mathematically as

R(mTs) = Sρ(mTs) exp(−jπmv̄
vN

) +Nδ(m), (1)

where m represents the digital sample index, Ts represents
the sampling time interval, S represents the signal power, ρ
represents the true autocorrelation of the signals, v̄ repre-
sents the mean velocity, vN represents the Nyquist velocity
and N represents the system noise. Similarly, the cross-
correlation function is modeled as

C(mTs) =
√
ShSvρhvρ(mTs) exp

[
−j(πmv̄

vN
+ φdp)

]
,

(2)
where Sh and Sv represent the signal from horizontal and
vertical channels, respectively, ρhv represents the cross-
correlation, and φdp represents the differential phase.

A series of detailed derivations was presented by Lei et al.
(2012) to obtain the estimators in various lags for all the
base moments and polarimetric variables. The lag-3 es-
timators, which is used throughout the study, are included
here for convenient reference. The signal power and cross-
correlation estimates are computed as

Ŝ =
|R̂(Ts)|

6
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7

, (3)

ˆρhv = |Ĉ(3)| (4)

× [|R̂h(3Ts)||R̂v(3Ts)|]
1
7

[|R̂h(Ts)||R̂v(Ts)|]
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where |C(3)| is the cross-correlation fitting using lags up to
3Ts and its general form is described as

|C(N)| = exp

[
3
∑N

m=−N α(m) ln |Ĉ(mTs)|
(2N − 1)(2N + 1)(2N + 3)

]
(5)

where α(m) = (3N2 + 3N − 1− 5m2), and Ĉ(mTs) is the
conventional cross-correlation estimate.

Figure 2 illustrates an example of fitting Gaussian functions
to a set of correlation coefficients derived from raw data at
different lags. One can see that the lag-0 estimate is clearly
contaminated by white noise and it is not used by the multilag
estimator.

2. PRELIMINARY RESULTS

Three case studies will be presented to illustrate the impacts
of multilag moment processor on various conditions. They
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Figure 2: An example illustrating the fitted Gaussian function
using different number of lag estimates.

include a stratiform rain case, a squall line with a gust front
which featured biological targets, and a winter precipitation
case with rain and wet snow.

2.1. Case 1: Stratiform Rain

A dataset on 2013/06/17 09:58 UTC from the PX-1000 along
with the closest scan from the KTLX, which is an operational
WSR-88D radar, are shown in Figure 3 for comparison. The
KTLX data are used for comparison as it is well calibrated
and the data within the domain of interest, i.e., within 60 km
range of the PX-1000, are of high SNR.

At this time, stratiform rain was observed within the radar
domain and reflectivity and high values of ρhv can be seen
to be homogeneous throughout the domain of interest. The
same radar variables from the PX-1000, shown in the lower
four panels, are derived using the conventional processing
method, i.e., canonical correlation estimate (the middle two
panels) and the multilag processing method (the lowest 2
panels). Besides the two missing sectors because of block-
ages, i.e., one due south and one due north-east, the re-
flectivity fields are in good agreements. Some attenuation
through rain for the X-band PX-1000 is expected as the radar
wavelength is shorter, which is more susceptible in that re-
gard. Within the scope of discussion, the rain attenuation is
not corrected.

Near the 10 km range, which is right outside of the blind
range, high values of ρhv estimate can be seen from all pro-
cessing methods and the KTLX data. With pulse compres-
sion, a moderate SNR of 20 dB from a 20 dBZ echo at this
range can be expected for the PX-1000 radar (Figure 1). As
expected, the ρhv field can be seen to suffer degradation due
to the SNR decrease as range increases. Usable ρhv is very
limited due to this degradation. In addition, an abrupt transi-
tion in ρhv at 10 km range can be seen from the right panels
of the middle row, due to the waveform switch as mentioned
previously. By using the multilag cross-correlation estimate
in Eq. (4), the sensitivity of ρhv estimate is virtually elimi-

KTLX − 2013/06/17 09:57:37 UTC − EL 1.8°

PX−1000 − 2013/06/17 09:58:53 UTC − EL 2.6°
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Figure 3: Comparisons of radar reflectivity and correlation
coefficients ρhv between the KTLX (top row) and the PX-
1000 (bottom two rows). Data shown in the middle row are
derived using conventional estimation technique and data
shown in the bottom row are derived using the lag-3 multilag
moment estimator. It is evident that ρhv suffers degradation
due to SNR loss but the multilag method virtually eliminate
this degradation.

nated as shown in the lower right panel of Figure 3. The ρhv
field is similar to the data from the KTLX even at the outer of
range of the radar domain.

2.2. Case 2: Squall Line and Biological Targets

A dataset on 2013/06/17 07:55 from the PX-1000 is shown in
Figure 4. Very intense precipitation can be seen right along
the squall line. Severe attenuation through the squall line
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Figure 4: An example data with biological clutter ahead of a
squall line. It is clear in this example that the multilag method
does not simply scale the ρhv estimates everywhere in the
radar domain but also preserves the low values where sig-
nals are not highly correlated.

can be observed in the PX-1000 data and signal extinction
can be seen to occur at around 35 km range. Near the fringe
of signal extinction, SNR is expected to be low and, thus, the
ρhv estimate suffers degradation as seen in the results from
the conventional moment processor. Once again, the multi-
lag estimator successfully eliminates the degradation due to
SNR loss and can be seen to maintain high values of ρhv
even near the regions of extremely low SNR.

Within the squall line, ρhv values exhibit a noisy field in the
KTLX data, which may be an indicator of the mix of rain and
non-meteorological returns. This is consistent with the ρhv
field from the PX-1000 using the multilag moment processor.

In contrast, the signature is completely masked away by the
low SNR degradation from the result using the conventional
method.

Another interesting observation in this dataset is the biolog-
ical target signatures ahead of the squall line, which can be
seen as weak echoes, 5-20 dBZ in the reflectivity field and
low correlation coefficient, ρhv < 0.7. It is important to note
that the multilag method does not simply enhance the value
everywhere in the radar domain but retains the unbiased ρhv
of the signals, as shown here. It is clear from this example
that algorithms such as the HCA would have difficulties dis-
tinguishing biological clutter from the meteorological returns.

2.3. Case 3: Winter Precipitation

A winter dataset on 2013/04/23 23:58 UTC from the PX-1000
is shown in Figure 5. Reflectivity fields are consistent among
radars and processing methods as expected. A band of low
ρhv observed in the KTLX data can be seen in the western
regions of the radar domain. Note that the location of KTLX
is not at the center of this plot so only a partial ring-like band
is shown in the KTLX data. A similar band of low ρhv can
also be seen in the correlation coefficient field from the PX-
1000 radar using the multilag method. The band of low ρhv
is at closer range of the PX-1000 as the scan elevation is
slightly higher (1.5◦ vs. 2.6◦). At 2.6◦ elevation and 30 km
range, this band of low ρhv indicates the height of the melting
layer at approximately 1.36 km, as ρhv decreases due to the
mix of rain and snow.

It is evident that the melting layer is extremely difficult to
locate in this case using conventional processing methods
as the decrease of ρhv estimate due to hydrometeor mix-
ing coincides with the decrease in SNR, which degrades the
ρhv as range increases. Automated algorithms such as the
HCA would not be able to properly classify the hydrometeor
species in such a situation. The multilag processing method
is undoubtedly important for solid-state radars that operate
at these SNR regimes.

3. CONCLUSIONS AND UPCOMING WORK

Three cases have been presented to illustrate the quality of
ρhv estimates from a 100 W solid-state weather radar us-
ing conventional and multilag processing methods. While
a pulse compression technique has been utilized to com-
pensate the low peak power of the transmitters, the ex-
pected SNR within the radar domain is still generally mod-
erate and/or low. A moment processor such as the multilag
method is necessary for solid-state weather radar to be vi-
able as ρhv estimates are far less sensitive to the SNR of
radar signals.
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Figure 5: An example data where ρhv is low at the melting
layer. Using conventional processing method would make
detection of such signature extremely difficult.

In the near future, an automated HCA would be implemented
for the PX-1000 to quantify the impacts of multilag process-
ing method on the HCA for the cases presented in this paper.

ACKNOWLEDGMENT

This work was partially supported by WeatherLink, Inc., Ko-
rea.

References

Balakrishnan, N., and D. S. Zrnić, 1990: Use of polarization
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