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ABSTRACT 

 

In variational data assimilation systems using climatological background error 

covariances, flow-dependent background error covariances can be introduced by hybrid 

ensemble-variational or 4-dimensional variational data assimilation techniques. In this 

paper, the features of climatological background error modeling via the NMC method are 

first investigated for the Weather Research and Forecasting Model’s variational data 

assimilation (WRF-Var) system, then flow-dependent background error features 

introduced by hybrid ensemble-3D-Var or 4D-Var data assimilation techniques are 

investigated. The background error statistics are extracted from the short-term 3km 

resolution forecasts in June, July and August 2012. It is found that (1) background error 

variances vary month to month and also have a feature of diurnal variations in low-level 

atmosphere; (2) u- and v-wind variances are underestimated and their auto-correlations 

are overestimated when the default control variable option in the WRF-Var is used. Two 

additional control variable transforms are proposed and described to form background 

error covariance matrix via the NMC method. Single observation data assimilation 

experiments demonstrated capability of both hybrid and 4D-Var methods are effective to 

introduce flow-dependent background error covariances. A case study using WRF 4D-

Var assimilating radar radial velocity observation shows that precipitation location 

forecast is slightly better than that 3D-Var or hybrid background error formulation.  
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1. Introduction 

The background error (BE) covariance matrix plays a key role in a variational data 

assimilation system by weighting the importance of a priori state, by smoothing and 

spreading information from observation points, and by imposing balance between the 

model control variables (Daley 1991; Bannister 2008a,b). However, the estimation of the 

BE statistics is not straightforward, since the truth is not known. Two methods are mainly 

used in current data assimilation systems. The so-called NMC (named for the National 

Meteorological Center, now called the National Centers for Environmental Prediction) 

method (Parrish and Derber 1992) is one approach that is widely employed to estimate 

the BE covariances. This method uses the differences between forecasts of different 

lengths, but valid at the same time, to evaluate the short-range forecast errors. An 

alternative method is to use an ensemble of short-term forecasts at a specific time to 

evaluate the BE covariances (Houtekamer et al. 1996; Fisher 2003).  

Various control variable transforms (CVTs) have been used in variational data 

assimilation systems to model multivariate and univariate aspects of the BE covariances 

approximately in a compact and efficient way (Bannister 2008a,b). Three kinds of BE 

modeling for wind analysis are widely used in variational data assimilation. Vorticity and 

(unbalanced) convergence/divergence are used in data assimilation systems at ECMWF 

(Courtier et al. 1996) and Meteo France (Fischer et al. 2005). Streamfunction and 

unbalanced velocity potential are widely used as control variables in global data 

assimilation systems, and some regional data assimilation systems (e.g. Ingleby 2001; 

Barker et al. 2004, 2012; Zupanski 2005; Rawlins et al. 2007; Huang et al. 2009; Wang et 

al. 2013). Whereas, velocities are employed as control variables in data assimilation 

systems for mesoscale and convective scales (e.g. Zou et al. 1995; Sun and Crook 1997; 

Gao et al. 1999; Zupanski et al. 2005; Kawabata et al. 2011). The velocity control 

variables may be more suitable for mesoscale and convective scale data assimilation 

since past theoretical analysis found that velocity control variables could combine the 

background and observations for all scales (Xie et al. 2002; Xie and MacDonals 2011).    

Assumptions are made to model BE covariances in an efficient and affordable way since 

the BE matrix is of high dimensions. The present numerical weather prediction model 

uses a large dimensional space, typically 10
7 

dimensions or more, and so the BE matrix 

has 10
14

 elements, which cannot be explicitly modeled. In practice, it is usually assumed 

that the BE covariances are nearly homogeneous and isotropic. For example, the present 

Weather Research and Forecasting (WRF) model’s variational data assimilation (WRF-

Var) system assumes that the BE covariances are homogeneous and isotropic. It is noted 

that both choice of CVT and assumptions made to model BE covariances as mentioned 

above could have impact on extracting BE information from forecast examples using 

either NMC or the ensemble method.  

The WRF-Var data assimilation system has been extensively used in research community 

and operational centers (Barker et al. 2012; Huang et al. 2013). For examples,  WRF-Var 

was adopted in the Rapid Update Cycling Data assimilation and Forecasting System at 

Beijing Meteorological Bureau (BJ-RUC; Chen et al. 2009), which has been run in 

operation since June 2008. The WRF-Var system with radar data assimilation has shown 
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consistently positive impact on precipitation prediction (Wang et al. 2013a). The 

operational application of the WRF-Var system at Taiwan’s Central Weather Bureau 

(CWB) has significantly reduced typhoon track forecast errors (Hisao et al. 2012). 

The NMC method has been employed in the specification of BE statistics for WRF-Var. 

WRF-Var is the basic component of the WRF model’s community variational/ensemble 

data assimilation system (WRFDA; Barker et al. 2012). Barker et al. (2004) suggested to 

apply empirical tuning factors to the length scales calculated via the NMC method 

(ranging between 0.5 and 1). Past studies (e.g. Xiao and Sun 2007; Sugimoto 2009; Li et 

al. 2012; Sun et al. 2012; Wang et al. 2013a) showed that radar radial velocity data 

assimilation using WRF-Var system with reduced lengthscales improved analyses and 

forecasts. These provide the motivation to investigate the features of BE modeling via the 

NMC method to further improve the performance of the WRF-Var system with the aim at 

mesoscale and convective data assimilation using high-resolution observations such as 

radar data. Moreover, investigations on BE modeling for WRF-Var will also benefit 

WRFDA. Flow-dependent background error features introduced by hybrid ensemble-3D-

Var or 4D-Var data assimilation techniques are investigated as well. 

This paper is organized as follows. Section 2 provides a description of the NMC method 

and features of BE statistics over Beijing region. Two new CVTs are introduced to use 

climatological background errors with the NMC method in section 3. Single observation 

and real radar data assimilation experiments are presented in section 4. A summary and 

discussion is given in the final section.  

2. Background error modeling 

2.1 The NMC method 

A common method to model BE covariance matrix is to take the difference between pairs 

of forecasts of different lead times but each valid at the same time (Parrish and Derber 

1992).  Forecast differences are usually calculated over a reasonably long period of time 

(e.g. a month). This makes the NMC method suitable for climatological forecast error 

statistics. In WRF-Var, the background error covariance matrix may be considered the 

following expression  

B » (x24 -x12 )(x24 -x12 )T                                                             (1) 

where 
24

x  and 
2

x
1

 are 24 h and 12 h forecasts respectively valid at the same time. The 

overbar denotes an average over time and/or space. The two forecasts can be written in 

terms of “truth” and their errors 
2424truth24

bεxx                                                               (2a) 
1212truth12

bεxx                                                               (2b)   

Here, 
truth

x  is the true atmospheric state at the valid time. 24
ε  and 12

ε  are the random 

errors, and 24
b  and 12

b  are the biases in each forecast. Assuming there is no bias or the 

bias is constant in time, 24
b = 12

b , the forecast difference is  

 
1224diff
εεx                                                                           (3) 

The BE covariance matrix is written as 
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B » (xdiff )(xdiff )T               

    
T12241224 ))(( εεεε   

    
T2412T1224T1212T2424 ))(())(())(())(( εεεεεεεε    (4) 

It is seen that BE modeling using Eq.1 including three parts: 24 h BE, 12 h BE and their 

correlations.  

 

2.2 B  modeling in WRF-Var 

In the WRF-Var system, a control variable transform Uvx   is used to model 

background errors. v  represents control variable vector and x  stands for analysis 

increment vector. The U  transform maps control variables from control space to analysis 

space. The CVT Uvx  is implemented through a series of operations vUUUx hvp  

(Barker et al. 2004). The default control variables (CV option 5; CV5) in WRF-Var 

includes the streamfunction  , the unbalanced part of velocity potential u , the 

unbalanced part of temperature uT , the unbalanced part of surface pressure uPs , and 

pseudo–relative humidity RH . The term “unbalance” refers to the residual from the 

balance with the streamfunction.   

The operators pU , vU  and hU are briefly described here. Readers are referred to Barker 

et al. (2004) for details. The horizontal transform hU  is to model auto-correlation of a 

control variable using recursive filters. The horizontal correlations are assumed to be 

homogeneous (i.e. not dependent on geographic position) and isotropic for each control 

variable. The vertical transform vU  is performed via an empirical orthogonal function 

(EOF) decomposition of the vertical component of BE on model levels. The variances 

and vertical correlations of each control variable are modeled in this stage. In default 

CV5, the time- and domain-averaged vertical component of BE is used indicating that the 

variances and vertical correlations are constant on each model level and do not depend on 

geographic positions. The physical variable transform pU  involves balance transform 

and conversion of control variables to analysis variable increments. The statistical 

balance transform is applied in this stage, defined by 
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where I  is the identity matrix, and  ,C , ,TC  and ,PsC  stand for statistical regression 

matrixes between  , T , Ps  and  . The analysis variables of u-wind (u ), v-wind ( v ), 

and specific humidity ( q ) can be obtained by a transform as follows. 
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,uC , ,uC , ,vC , ,vC  and rhq,C  map variables  ,  , T , Ps  and RH to analysis 

variables u , v , T , Ps  and q .  

 

2.3 Features of B  variance modeling 

It is seen that the CVT and several assumptions are taken to model the BE matrix 

approximately in a compact and efficient way. A natural question to ask is: what 

information is lost/filtered out by CVT and the above assumptions?  

The operational WRF 24 h and 12 h forecasts from BJ_RUC in June, July and Aug 2012 

are used to calculate short-term BE statistics in this paper. The statistics are over the inner 

domain (D2, Fig.1) with 3 km grid spacing. Readers are referred to Chen et al. (2009) for 

a detailed description on BJ_RUC. The forecast differences between 24 h and 12 h 

forecasts at the same time are employed to model the BE statistics. The standard 

deviation in the three-month forecasts directly estimated by Eq. (1) without CVT is 

named as STD_NMC. The standard deviation derived from B  that is generated by WRF-

Var gen_be utility is named as STD_CV5. This is achieved through sampling the B  

matrix in control variable space and then computing statistics in analysis space after CVT 

(Andersson et al. 2000). 200 samples are taken in this paper. Single observation 

experiment is another alternative method to show BE variance in observation space, 

which will be used in section 3.  

 

The monthly variations of background errors are found. Figure 2 depicts the BE variances 

for u , v , T , and RH . It is seen that the BE variances for wind and temperature in June 

and July are relatively larger than that in August. The diurnal variations of forecast error 

near surface are clearly shown in Fig. 3. The error variances for wind and temperature in 

the low atmosphere at evening12Z (local time 20Z) are larger than that at morning 00Z 

(local time 08Z). The above results indicate that even with the climatological BE 

statistics the time dependent variances can be achieved. Surface observations are 

important data sources for a regional rapid update cycle data assimilation system. The 

results indicate that BE covariances accounting for diurnal variation may benefit the 

surface data assimilation. 

 

Practically CVT (CV5) is used to model background errors for WRF-Var. We also 

compare STD_NMC to that modeled by WRF-Var (STD_CV5) to answer the question: 

what signals are filtered by WRF-Var CVT? The vertical profiles of STD_NMC and 

STD_CV5 are plotted in Fig. 4. It is seen that STDs of all the variables are 

underestimated and especially for u , v . In the BJ_RUC system for radar data 

assimilation, the lengthscales are tuned to be half of the original ones. With tuned B  
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(CV5), the u , v  variances (STD_CV5_L05 in Fig. 4) are comparable to STD_NMC. 

This indicates CVT in WRF-Var may contribute to the significant underestimates of the 

background error STD of winds. 

 

3. New CVTs for B  modeling 

In this paper, two CVTs are proposed to account background errors statistics in the NMC 

forecast differences. A natural choice is to use u  and v as control variables for wind 

analyses since that u  and v has been used as control variables in data assimilation 

systems for mesoscale and convective-scale forecasts (e.g. Zou et al. 1995; Sun and 

Crook 1997; Gao et al. 1999; Zupanski et al. 2005; Kawabata et al. 2011). 

 

The new formulation, which uses u , v , T , Ps  and sRH  (pseudo relative humidity) as 

control variables, is developed in WRF-Var for mesoscale and convective-scale data 

assimilation. The new control variable transform can be written as 

22 vUUUx hvp                                                             (7) 

We followed WRF-Var procedure to use recursive filter and EOFs to model horizontal 

and vertical correlations respectively which are implemented through hvUU . The 

homogeneous and isotropic filters, which are used for CV5, are applied to each control 

variable. In addition, the time- and domain-averaged vertical component of BE is used 

indicating that the BE statistics do not depend on geographic position. It is noted that 

2pU  in Eq.7 only involves conversion analysis increments relative humidity to specific 

humidity as shown in Eq.6.  No statistical balance transform (Eq.5) is applied in this 

transform. 

 

Another possible approach that directly uses forecast differences in the NMC method to 

form BE covariance matrix is described here. The analysis increment is expressed in a 

subspace expanded by the NMC forecast differences 

x'= ak xk
d( )

k=1

K

å                                                             (8) 

where K is the total number of forecast differences, and the vectors xk
d

( Kk ,1 ) is the kth 

unbiased difference of forecast pairs normalized by K
1/2

.  

  Kdiff

k

d

k /xxx 
                                                     

(9) 

In practice, the time-averaged bias x  is removed from the forecast differences. The 

vector ak stands for the augmented control variables for the kth forecast difference. ak
will be called “alpha” control variable hereafter in this paper. The symbol  denotes the 

Schur product of the vectors akand xk
d

. Let X '= (x1
d,x2

d,...,xk
d,...,xK

d ), it is obvious that 

  SXX T''  is the B  covariance matrix defined in Eq.1 but with covariance 

localization defined by S= ak (ak )
T

.  

 

The transform (Eq.8) has been developed in the WRF hybrid ensemble-3DVar data 

assimilation system. The readers are referred to Wang et al. (2008) for details. In their 
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scheme, an ensemble of forecast perturbations was used to incorporate flow dependent 

error covariance of the day. We adopt this idea but use the NMC forecast differences 

instead of ensemble perturbations to form the BE covariance matrix.  

 

In the WRF hybrid ensemble-3DVar system, both the horizontal and vertical localization 

can be applied. Specifically, the horizontal and vertical correlation localizations are 

implemented through recursive filters (Wang et al. 2008) and vertical correlation matrix 

respectively. A general formulation to form the vertical covariance matrix can be written 

as 

)
)(

),(
exp(),(

2

1

2

21
21

lD

lld
llCov 

                                          (10)
 

where ),( 21 llCov  represents the correlation between model levels 1l  and 2l . d is the 

distance in a specified coordinate between model level 1l  and 2l  and D stands for the 

level-dependent vertical localization radius. 

 

The default vertical correlation matrix in WRF-Var is defined in model level space, 

specifically, 1221 ),( lllld  , 
N

l
lD 1
1 10)(  , N  is the total number of model levels. 

)

)10(

)(
exp(),(

21

2

12
21

N

l

ll
llCov


                                         (11) 

It is seen that the level-dependent localization radius  )( 1lD  only depends on the number 

index of model level indicating that observation at model level with large number index 

will be widely spread in vertical direction.  This may reduce the impact of observations 

that are located in low model levels.
   

In addition to the above formulation (Eq.11), a specific application of Eq.10 in height 

coordinate is also tested  

)
))((

))()((
exp(),(

2

1

2

12
21

lZ

lZlZ
llCov




                               (12) 

Z is domain-averaged height at a model level. For simplicity, a constant vertical 

localization radius )( 1lZ  is used as done by Li et al. (2012). The above two vertical 

localization specifications (Fig. 5) are examined and Eq. (12) is used in real radar data 

assimilation experiments.  

 

In summary, we proposed two CVTs to incorporate climatological B  with the NMC 

method in WRF-Var. The first one uses u , v , T , Ps  and sRH  as control variables, 

which is named as CV7 in WRF-Var. The STD derived from the BE matrix using CV7 is 

shown in Fig. 4 (STD_CV7).  It is shown that the use of u  and v , which are WRF model 

prognostic variables, as control variables gives a good STD modeling. The other "alpha" 

control variable approach can provide geographic location dependent BE covariance 

modeling, which will be clearly shown in the single observation data assimilation 

experiments in next section.  
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4. Single observation data assimilation experiments 

The B  matrix weights the background state and spreads out observation information in 

horizontal and vertical directions in space. Increments from single observation 

experiments can be used to estimate BE variance and demonstrate how the BE covariance 

spreads the observation information spatially, which give a graphic representation BE 

structure function (Huang et al. 2009; Gustafsson et al. 2012).  

 

4.1 Experimental design 

To better understand the differences in BE representations in the three formulations, 

single observation data assimilation experiments are conducted to show BE covariance 

structures ( B ). First the experiments (Table. 1) assimilating a single u observation are 

presented.  Innovation is 1.0 m s
-1

, and observation error is 1.0 m s
-1

. Variance scaling 

factor for each control variable is 1.0 which is default value in WRF-Var. The single 

observation is set at location (271,212,25) in model grid.  

 

The experiments CV5 and CV7 and NMC are designed to see impact of climatological 

background error formulations on analysis increments. The operational WRF 24 h and 12 

h forecasts from BJ_RUC in June, July and Aug 2012 are used to calculate BE statistics 

for CV5 and CV7. The NMC forecast differences are used in experiment NMC. 

Compared to the above three experiments, three experiments ENS, 4DVAR-CV5 and 

4DVAR-CV7 are carried out to show the capability of introducing flow-dependent error 

covariances by hybrid or 4D-Var methods. There are no  vertical localization in 

experiments NMC or ENS.  In experiment ENS, an ensemble of 20-member 12 h WRF 

forecasts  at 0000 UTC 21 July 2012 is initiated from NCEP global ensemble forecast 

system. The assimilation time window is 30 minutes for the two 4DVAR experiments. 

 

4.2 Analysis increments 

In this subsection, first the horizontal and vertical structures of u  analysis increments 

will be examined. Then multivariate features of analysis increments will be described. 

Vertical south-north section of u  increments across the single observatoin location are 

shown in Fig. 6. The maximum values of the u  analysis increments in CV5 and CV7 are 

0.66 (Fig. 6a) and 0.89 m s
-1 

(Fig. 6b) respectively. The corresponding BE standard 

deviations are 1.39 and 2.84 m s
-1

, respectively, indicating that CV5 underestimate wind 

variance than CV7. This result is consistent with the BE standard deviation estimations 

presented in section 2.2 (Fig. 4a). It is noted that the four experiments using alpha control 

variable produces almost the same value of the maximum analysis increments (Fig. 6c) to 

that of CV7. The two new formulations provide a consistent BE variance modeling.  

 

In CV7, the lengthscale is directly calculated in u  space so that it can be used as time- 

and domain averaged lengthscale reference for other experiments. Comparing the 

horizontal spread of observation information in Fig. 6a to Fig. 6b, it is found that CV5 

overestimates horizontal lengthscale of auto-correlations. By reducing lengthscale by a 

half, the maximum value of u  increment is increased to 0.88 m s
-1 

which is almost same 

to those in CV7 (Fig. 6b). The results confirm that reducing lengthscale increases the 

wind variance in Fig. 4. This may partially explain why radar data assimilation using 
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WRF-Var system with reduced lengthscales improved analyses and forecasts (Xiao and 

Sun 2007; Sugimoto 2009; Sun et al. 2012; Wang et al. 2013b).  

 

For experiments NMC, ENS, 4DVAR-CV5 and 4DVAR-CV7, it is seen that the u  
analysis increment is unsymmetrical compared to the experiments CV5 and CV7. Small 

negative increments under about 10
th

 model are derived by NMC differences, ensemble 

information or 4D-Var technique compared to the experiments CV5 and CV7.  It is noted 

that for use of alpha control variables, results are sensitive to horizontal localization scale 

and vertical correlation matrix formulation.  

 

The features of the multivariate analysis increments are analyzed. Figure 7 shows T 

increments by assimilating a single u  observation. It is obvious that the amplitudes of 

increments are smaller in NMC than ENS.  Vertical localization scales is required when 

alpha control variables are used.  

 

4.3 Real radar data assimilation experiment 

The impact of background formulations on the heaviest rainfall in 6 decades occurred in 

Beijing on 21 July 2012 are demonstrated in this section.  The model domains are shown 

in Fig. 1. One-way nesting configuration is used in this study. The inner model domain 

has 550x424x38 grids with 3 km resolution. The WRF model is initiated at 1800 UTC 20 

July 2012, and its 6 hour forecast at 0000 UTC 21 July 2012 is serviced as the 

background of data assimilation experiments.  For model physics options please refer 

Chen et al's paper (2009). All the data assimilation experiments are over inner domain.  

Forecasts from three 3D-Var and hybrid data assimilation, and two 4D-Var data 

assimilation experiments are reported. For 4D-Var experiments, the time window is 18 

minutes, and radar data are used every 6 minutes. Observed and forecasted 24h 

accumulate precipitation are shown in Fig. 8. It is seen that the 4D-Var experiment with 

the new background error formulation (CV7) shows that precipitation location forecast is 

slightly better than that with the standard CV5 or Hybrid background error formulation. 

 

5. Summary and discussion  

In this paper, the features of background error modeling via the NMC method are 

investigated in details for the WRF-Var system. The aim of this work is to further 

improve the performance of the WRF-Var system on mesoscale convective-scale data 

assimilation. The short-term regional 3km resolution forecasts in June, July and August 

2012 from BJ-RUC are used to extract background error statistics. The two new CVTs 

are proposed and described to incorporate climatological B  via the NMC method in 

WRF-Var. Up to the authors’ knowledge, this is the first work using the two proposed 

CVTs to study climatological BE modeling in context of the WRF-Var system. The 

features of several CVTs are investigated in detail using three-month high-resolution 

operational forecasts. 

The main work is summarized as follows. 

• The BE variances of various variables vary from month to month, and the diurnal 

variation of BE in low-level atmosphere is also found.  
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• WRF-Var CV5 BE modeling underestimates wind error variance but 

overestimates wind error length scale.   

• Two CVTs that are proposed to incorporate climatological B  with the NMC 

method in WRF-Var are investigated. The first one uses u , v , T , Ps  and sRH  

as control variables. Another approach is to employ "alpha" control variables to 

incorporate location dependent error covariance. The detailed technical 

descriptions are provided for the two new formulations. 

• A case study using WRF4D-Var with the new background error formulation 

(CV7) shows that precipitation location forecast is slightly better than that with 

the standard CV5 or Hybrid background error formulation. 

The two proposed methods give good variance modeling in the NMC forecast differences. 

The use of the NMC forecast differences through alpha control variable has the benefits 

of incorporating the geographical dependent covariance information and producing multi-

variate analysis. However, analysis increments are sensitive to horizontal and vertical 

localization radiuses using alpha control variable. Though the new proposed CV7 only 

produces the univariate analyses, the multi-variate analyses is achieved by use of hybrid 

or 4D-Var methods. The developments will benefit other components such as 4DVar, 

hybrid Var-ensemble data assimilation in WRF community data assimilation system 

(Barker et al. 2012; Huang et al. 2013). 

In WRF-Var, the climatological statistical correlations between relative humidity and 

other control variables can be taken into account with CV option 6 (CV6) (Chen et al. 

2013). These climatological statistical correlations between relative humidity and other 

variables can be achieved by the use of the alpha control variable as well. Moreover, CV7 

can also be used to model BE covariance of day using an ensemble of short-term 

forecasts.  

The monthly and diurnal variations of variances can be considered in climatological BE 

modeling in WRF-Var. In reality, the BE covariances may be substantially flow 

dependent. The current BE statistics using the NMC method may not be optimal to 

provide the BE covariance of the day for mesoscale and convective scale data 

assimilation. A super ensemble including the NMC forecast differences and short-term 

ensemble forecasts could be used to blend climatological error covariances and flow-

dependent error covariances of the day in a hybrid system. Preliminary results from a 

case study using WRF4D-Var with the new background error formulation (CV7) showed 

that precipitation location forecast is slightly better than that with the standard CV5 or 

Hybrid background error formulation.  The detailed investigations on reasons leading to 

good forecasts are underway.  
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Table. 1 List of single observation data assimilation experiments 

Experiment name CV Descriptions 

CV5 5 3DVAR 

CV7 7 3DVAR 

4DVAR-CV5 5 4DVAR 

4DVAR-CV7 7 4DVAR 

NMC alpha 3DVAR;  

NMC differences; 

Length scale 60km 

ENS alpha 3DVAR; 

Ensemble differences; 

Length scale 60km 
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Fig. 1. BJ_RUC model domains and an example of radar observation distribution at 00Z 

July 21 2012. 

Fig. 2. Profiles of forecast error in terms of STD estimated by NMC method for June, 

July and August 2012. (a) u, (b) v, (c) T, (d) RH 

Radar Data Distribution 

5 

00Z 21 July 2012 

06Z 21 July 

12Z 21 July 
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Fig. 3. Profiles of forecast error in terms of STD estimated by NMC method at 00 UTC 

(black curve) and 12 UTC (red curve) for (a) u, (b) v, (c) T, (d) RH 
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Fig. 4. The vertical profiles of STD_NMC, STD_CV5, STD_CV5_L05 and STD_CV7. 
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 Fig. 5 The correlation matrix for alpha control variable localization for (a) Eq.11, and 

(b) Eq.12.    
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Fig. 6. Vertical west-east section of u  increments for single u  observation experiments. 

(a) CV5, (b) CV7, (c) NMC, (d) ENS, (e) 4DVAR-CV5, and (f) 4DVAR-CV7. 

 

 

 
Fig. 7. Vertical west-east section of  T increments by assimilating single u observation  

 (a) NMC, (b) ENS, (c) 4DVAR-CV7. 
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Fig. 8. 24h accumulated rainfall from 00Z 21 July 2012 to 00Z 22 July.  

 


