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1. INTRODUCTION

In order to improve the understanding of the dynam-

ics and structure of tornadoes or weather systems, fast

scanning time is required for weather radars (Bluestein

et al., 2003; Carbone et al., 1985). However, radar scan

time for a volume coverage pattern (VCP) is constrained

by the mechanical limitation of pedestal (Yu et al., 2007).

On the other hand, the field of atmospheric reflectivity

can be obtained by steering a pencil beam through the

region of interest either mechanically from conventional

weather radar with a dish antenna or electronically from

phased-array antenna.

Phased array radars (PAR) were used for weather ob-

servations to achieve high data quality with a rapid scan-

ning via beam multiplexing (Yu et al., 2007; Zrnic et al.,

2007). Similar to phase array radars, imaging radars

can provide high temporal resolution using digital beam

forming (DBF) technique. In other words, multiple re-

ceiving beams are formed simultaneously within the field

of view (FOV) by exploiting the phase differences of sig-

nals from a number of spatially separated arrays of an-

tenna (Skolnik, 2001). The FOV is defined by the trans-

mitted beam width, which is typically wide enough to

cover the region of interest. No physical beam-steering

is needed for imaging radar and all the beams are

formed in the digital domain after signals received from

multiple antenna arrays. Therefore, the scan time is sig-

nificantly reduced because it is only determined by the

dwell time. Moreover, an Atmospheric Imaging Radar

(AIR) developed in the Advanced Radar Research Cen-

ter (ARRC) of the University of Oklahoma. AIR transmits

a fan beam width 20 degree in elevation and one de-
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gree in azimuth and consists of 36 spatially separated

receivers (Isom et al., 2013).

Imaging radar was used for observations of ionosphere

with equatorial electrojet at top of the Jicamarca Radio

Observatory (Kudeki and Sürücü, 1991) and reported

that it also has the advantage of adaptive spatial clut-

ter filtering, flexible update time at different beam posi-

tions and ranges, etc (Le et al., 2009; Yeary et al., 2011;

Isom et al., 2013; Cheong et al., 2006). Further, coher-

ent radar imaging is introduced based on constrained

optimization using Capon’s method for the lower atmo-

sphere (Palmer et al., 1998). It has shown that Capons

method achieves higher angular resolution compared to

Fourier beamforming (Palmer et al., 1998; Cheong et al.,

2004). Recently, radar imaging has been considered

as inverse scattering problem for the spatial map of re-

flectivity. Note that the number of receivers are much

smaller than the number of angular sampling points on

reflectivity field.

In this work, an emerging technology of compressive

sensing (CS) is applied to measure the reflectivity field

within the FOV of imaging radar. CS was developed to

recover a sparse signal or an image with much fewer

measurements than those normally required (Candès

and Romberg, 2006; Donoho, 2006; Candès and Wakin,

2008). CS has been applied to many fields such as

medical imaging (Lustig et al., 2007), radar waveforms

(Baraniuk, 2007; Herman and Strohmer, 2009), etc.

Moreover, CS is applied to estimate the direction of ar-

rival (DOA) for multiple sources by using array sensors

(Gurbuz et al., 2007; Wang et al., 2011). Also, an appli-

cation of CS to beam forming for under water acoustic

data is presented for finer angular resolution in (Edel-

mann and Gaumond, 2011).

It is important to note that the application of CS to

DOA estimation, so far, was made pulse based (Gur-
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buz et al., 2007; Wang et al., 2011; Edelmann and Gau-

mond, 2011). However, the computational time of CS is

expensive for pulse based reconstruction. In this work,

we develop a correlation based CS for reflectivity esti-

mation with the goal of higher angular resolution. Both

CS and Capon were implemented for the estimation of

reflectivity field by using the array configuration based

on AIR. Preliminary results have shown that CS can

achieve higher angular resolution compared to Capon

beamforming. The remainder of this paper is organized

as follows. In section 2, formulation of beamforming will

be briefly reviewed. A review of proposed compressive

sensing algorithm and correlation based CS in section 3.

Numerical simulation of reflectivity from imaging radar is

shown in section 4. Statistical analysis of CS and Capon

beamforming with results will be in section 5. The sum-

mary is presented in section 6.

2. FORMULATION OF BEAMFORMING

The reflectivity field for distinct angular directions can be

estimated by combining received signal coherently from

a given uniformly spaced phase arrays. The phased ar-

rays are located with a certain distance to obtain phase

shifts in order to steer the beam for different angular di-

rections. By changing the weights for desired angles, a

full map of reflectivity can be obtained within the trans-

mitted beam of the radar. Let x(t) represent a vector of

received signals at time t from M receivers. Then the

received signal can be expressed in discrete and linear

form for reflectivity as:

x(t) = WA (1)

where A is reflectivity field and expressed indepen-

dently from time for simplicity. W is a measurement

matrix or weighting matrix for beamforming. Practi-

cally, the received signals are obtained from continu-

ous reflectivity field. For the sake of reconstruction

and simplicity, let us assume that the reflectivity field

A is discretized to L number of angular points, A =

[A(θ1), A(θ2), ..., A(θL)]
T . Therefore, a set of pointing

vectors is developed for L desired angles to estimate

reflectivity field, creating a matrix W.

W =


ejksinθ1d1 ejksinθ2d1 · · · ejksinθLd1

ejksinθ1d2 ejksinθ2d2 · · · ejksinθLd2

...
...

...

ejksinθ1dM ejksinθ2dM · · · ejksinθLdM


(2)

where k equals to 2π/λ, dm is the distance from mth

array to the center array m = 1, 2, ...,M , λ is the

radar wavelength and θl is desired angular directions

l = 1, 2, ..., L. For a particular angular direction, w is

obtained from lth column of W, w = Wl. As result, the

size of matrix W becomes M × L. Typically, the num-

ber of receivers M is much smaller than L. Therefore,

the reflectivity retrieval becomes an underdetermined in-

verse problem.

2.1. Fourier beamforming

The output of the beamformer, y(t), can be obtained

by assigning a weighting vector, w, for desired angular

direction in the following:

y(t) = wHx(t) (3)

where H is the Hermitian (complex conjugate) operator.

The reflectivity field can be derived from the autocorre-

lation function of y(t) by assuming it is zero mean since

the steering vector w is data independent. Then the re-

turned power from a particular direction can be obtained

as following (Isom et al., 2013; Palmer et al., 1998):

PF (θl) = E[y(t)yH(t)] = WH
l R(0)Wl (4)

where R(0) = E[x(t)xH(t)]. Fourier beamforming is

only a function of direction and lead to constructive in-

terference in the steering angle direction. The resolution

is limited by the response of W.

2.2. Capon beamforming

In order to improve angular resolution as minimizing

the sidelobe effects, an adaptive weighting vector is ob-

tained by constraining the weighting vector in the de-

sired angle to minimize the output power (Isom et al.,
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2013; Palmer et al., 1998; Cheong et al., 2006).

min P (θl) subject to eHl w = 1 (5)

Langrage method is performed to obtain output power

(Isom et al., 2013; Palmer et al., 1998; Cheong et al.,

2006) and the resulting form of the retuned power is

given here.

PC(θl) =
1

WH
l R(0)

−1
Wl

(6)

It has shown that Capons method achieves higher angu-

lar resolution compared to Fourier beamforming. How-

ever, small errors present in the steering vector that can

reduce the accuracy of amplitude estimations. Note that

Capon weight vector was derived to minimize output

power of beamformer subject to unity gain in the de-

sired direction. No attempt was made to mitigate any

noise effect on the estimation

3. COMPRESSIVE SENSING

The emerging theory of CS has been studied as a new

framework for solving underdetermined problems in a

linear model (Candès and Romberg, 2006; Donoho,

2006). It has been shown in CS that sparse images

or signals can be reconstructed accurately from a lim-

ited number of incoherent measurements using nonlin-

ear reconstruction (Candès and Romberg, 2006). In this

paper, CS is applied to solve the inverse problem of re-

flectivity from phase array radar, where the number of

receivers are less than number of angular points. In or-

der to produce satisfactory reconstruction, CS requires

three key elements such as sparsity, incoherence and

l1-norm minimization.

Sparsity can be defined in either original domain or it

transform domain that a signal can be represented by

only a few nonzero coefficients. For example, if a sig-

nal has all pixels of nonzero values, it might only contain

a few nonzero coefficients after a linear transformation,

such as Fourier transform or wavelet. Practically, the

condition of sparsity might not be met, but most of the

natural signals can be compressible. The compressible

means that the signal can be represented a few large

coefficients after transformation, but the rest of the coef-

ficients have relatively smaller values.

In order to reconstruct sparse or compressible signals

using CS, the measurements should be obtained inco-

herently. The coherence measures the similarity be-

tween the columns of the measurement matrix if the

identity transformation is used. The lower coherence in-

dicates that the less number of measurements needed

for accurate reconstruction. Also, coherence can be

used to guarantee stable reconstruction through l1-

norm recovery. Consequently, the l1-norm tends to gen-

erate sparse solutions by penalizing small values heav-

ily compared to l2-norm and it is defined as sum of the

absolute values of the coefficients. Since the sparse sig-

nals have small l1-norm relative to the l2-norm, l1-norm

is more efficient to retrieve sparse signals.

3.1. Formulation of correlation based CS

CS requires a linear relationship between the received

signals and desired to estimate of reflectivity field. In

this work, the goal for CS is to estimate power of reflec-

tivity directly from correlation matrix. Therefore, in order

to derive power equation for correlation based CS, au-

tocorrelation of received signal is exploited in the follow-

ing.

E[x(t)xH(t)] = E[WAAHWH] (7)

R(0) = WE[AAH]WH (8)

Where W is called as a measurement matrix for CS and

to distinguish from the steering vector. It is assumed that

the expectation of reflectivity for cross correlation equals

to zero because the reflectivity is spatially uncorrelated

for different sampling angles. The expectation of power

of reflectivity is expressed in the following:

E[AAH] =


|A(θ1)|2 0 · · · 0

0 |A(θ2)|2 · · · 0
...

...
...

0 0 · · · |A(θL)|2


(9)

The squared term of reflectivity is expressed in a column

vector and extracted from multiplication of the measure-

ment matrices, Â = [|A(θ1)|2, |A(θ2)|2, ..., |A(θL)|2]T .
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Similarly, R(0) is also expressed in a column vec-

tor with the same order of Â, denoted as R̂ =

[R(1, 1), R(1, 2), ..., R(2, 2), R(2, 3), ..., R(M,M)]T .

Note that only the upper triangle of R(0) is used for

correlation based CS because of the lower triangle part

is conjugate of the upper part and there is no new infor-

mation. Subsequently, a linear relationship is derived for

power of reflectivity from autocorrelation and correlated

measurement matrix.

R̂ = KÂ (10)

where K is correlation measurement matrix and derived

from 8,

K =



ejksinθ1(d1−d1) ejksinθ2(d1−d1) · · · ejksinθL(d1−d1)

ejksinθ1(d1−d2) ejksinθ2(d1−d2) · · · ejksinθL(d1−d2)

...
...

...

ejksinθ1(d2−d2) ejksinθ2(d2−d2) · · · ejksinθL(d2−d2)

ejksinθ1(d2−d3) ejksinθ2(d2−d3) · · · ejksinθL(d2−d3)

...
...

...

ejksinθ1(dM−dM ) ejksinθ2(dM−dM ) · · · ejksinθL(dM−dM )


(11)

As a result, the power of reflectivity retrieval using CS is

obtained by solving the following minimization problem:

min ‖Ã‖l1 subject to ‖R̂−KÃ‖l2 < ε (12)

where ε controls the consistency between the estimated

data from reconstruction and measured data. In other

words, the retrieved reflectivity would be the sparsest

solution among all solutions that are consisted with the

acquired data.

4. NUMERICAL SIMULATIONS

Numerical simulations were developed to demonstrate

and verify the feasibility of CS for reflectivity retrieval

from imaging radar. The model reflectivity is simulated

by using a three dimensional radar simulator to gen-

erate raw time series data for weather radar (Cheong

et al., 2008). A field of thousands of scatterers is pop-

ulated within the FOV of the radar. Simulator produces

time series by adding coherently thousands of discrete

signal by using the numerical weather parameters from

Advanced Regional Prediction System (ARPS). For the

simulation, 36 receivers are used with the spacing d =

λ/2. The simulation domain used for reflectivity simula-

tion was -1.88 km to 1.88 km and with 50 m range gate.

It is assumed that frequency of radar is 9.55 GHz and

20 dB transmitted beam width.

In this work, two Gaussian models with zero mean were

considered to evaluate performance for resolution. It is

assumed that the model reflectivity is 9 km ahead of the

radar. Mean of the two Gaussian peaks are located at

range R1 = 0km and R2 = 1.1km and standard de-

viation σ changes from 53.16 m to 265.8 m with every

35.44 m. In the reconstruction, 120 number of angular

points are used between -12 degree to 12 degree.

5. NUMERICAL RESULTS

The goal this section is to investigate the performance of

CS for different amounts of noise and various reflectivity

structures through statistical analysis. Additionally, the

performance of CS will be compared to Capon beam-

forming under these conditions. For each case 50 re-

alizations were performed, each with independent noise

sequence for various models, where signal to noise ratio

(SNR) is used as 10 dB and 20 dB. The performance of

CS reconstruction and Capon beamforming for the reso-

lution are quantified by the resolution equation defined in

(13). The resolution is defined as a local minimum exist

between two peaks. The local minimum range is found

between two symmetric peaks, Rm = (R1 + R2)/2.

The two peaks in the Gaussian model are located at

ranges R1 and R2, which are the mean of the model

peaks. The resolution of the estimated reflectivity field

and model field was calculated in the following equation

(Mir and Carlson, 2012).

res =
1

2
(PR1

+ PR2
)− PRm

(13)

where (PR is the power in logarithmic domain. There-

fore, it corresponds the ratio of (Pmax/Pmin) in numer-

ical scale for range R1,2 and Rm.

5.1. SNR = 20 dB

The reflectivity was estimated by CS and Capon beam-

forming with 36 measurements and SNR = 20 dB in Fig-
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ure 1. It is evident that both CS and Capon estimates

Figure 1: SNR=20dB. Gaussian model with two peaks

(blue), CS reconstruction (red), Capon beamforming

(green)and standard deviation of models, σ=53.16 m

(left panel), σ=159.49 m (middle panel), σ=159.49 m

(right panel)

mostly reflectivity changes for various standard devia-

tion as shown in Figure 1. Also, Both CS and Capon are

able to resolve the peaks, while CS has better separa-

tion than Capon by considering the lower dip at range

Rm shown in the left and the middle panels of figure 1.

On the other hand, when the standard deviation or mid-

point amplitude at range Rm increases, the background

level of CS increases as Capon sidelobes stay lower.

On the other hand, the beam width in the CS recon-

struction is narrower than Capon’s. One of the reason

is that the l1-norm minimization tends to sparse peak in

the reconstruction since the simulated signals are Gaus-

sian distributed which is more favored by l2-norm based

solutions.

The mean resolution from CS and Capon as a function

of standard deviation, σ, are shown in Figure 2. It is

obvious that separation of two Gaussian models in CS

reconstruction is better than Capon beamforming in Fig-

ure 2. Note that the higher resolution indicates the better

separation between the peaks. Both of CS and Capon

resolution reduce with the increasing the standard devi-

ation since the peaks becomes closer in Figure 2 and

4. CS reconstruction has closer resolution to the model

than Capon for all the cases in Figure 2.

Figure 2: Resolution of Model (blue), CS reconstruc-

tion (red), Capon beamforming (green) with SNR=20

dB. Standard deviation of models changes from 53.16

m to 265.8 m every 35.44 m

5.2. SNR = 10 dB

CS and Capon are still able resolve the two peaks when

the amount of noise increased to SNR=10 dB, while

CS reconstruction has lower dip than Capon beamform-

ing between the two peaks in Figure 3. For SNR=10

dB, the background level of the model above the 0.5

km, CS background level and Capon sidelobes are sim-

ilar shown in the middle and right panel of Figure 3.

By doing a cross comparison between the SNR=20

dB and SNR=10dB in Figures 1 and 3, both CS and

Capon power estimation are reduced around 5 dB in

SNR=10dB .

The amount of noise increased and SNR is set to 10 dB.

The resolution of CS retrieval and Capon beamforming

decreases as σ increases in Figure 4. Both CS and

Capon beamforming resolve the peaks grossly. CS re-

trieval has closer resolution to the model than Capon

beamforming with SNR=10 dB in Figure 4. Both CS and

Capon resolution with SNR=10dB decreases comparing

to resolution with SNR=20dB in Figures 2 and 4.
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Figure 3: SNR=10dB. Gaussian model with two peaks

(blue), CS reconstruction (red), Capon beamforming

(green) and standard deviation of models, σ=53.16 m

(left panel), σ=159.49 m (middle panel), σ=159.49 m

(right panel)

6. SUMMARY

In this work, the application of CS to atmospheric ob-

servations using imaging radar was demonstrated. Per-

formance of CS and Capon beamforming was evaluated

statistically and compared using resolution metric. It is

evident that CS and Capon are able to resolve the peaks

consistently, while CS has better resolution than Capon

for SNR=20dB and 10 dB. The results suggest that CS

has potential to resolve close peaks better than Capon

for the given conditions.
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