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1 INTRODUCTION 

The Australian Bureau of Meteorology has 

upgraded the Doppler capability in a number of its 

operational radars in recent years. With this new 

observation source, the assimilation of radial velocity 

is developing in conjunction with kilometer-scale 

numerical weather prediction. Radar provides one of 

the few observation types that can yield good 

coverage at these resolutions. However, quantitative 

applications like data assimilation require good quality 

control. 

Australian radars detect a range of echo types, 

including precipitation, aerofauna, chaff, smoke, 

ground clutter and sea clutter. Some of these may be 

used for wind estimation, if the bias is sufficiently small 

or quantified. Precipitation use is well established for 

wind estimation, though it may be biased by the fall 

velocity of the hydrometeors. Insect echo may be used 

for wind estimation in data assimilation if it is 

demonstrated that the independent flight is negligible 

compared to the observation error (Rennie et al. 2010; 

Rennie et al. 2011). Smoke, though rare, can produce 

substantial echo from bush fires. The most extreme 

fires have a reflectivity and echo height comparable to 

precipitation. Chaff when ejected from an aircraft does 

not reflect the wind velocity, so should be avoided. 

Echo from the ground or sea (either directly or 

anomalous propagation (anaprop or AP)) or from birds 

or bats cannot be used for wind estimation. These 

echo types are observed at various radars depending 

on their geography and climate. 

The objective for developing this classification 

algorithm is to use the available information to identify 

echo types, to the stage where observations of radial 

wind can be reliably selected for data assimilation. The 

simplest methods involve simple thresholds to remove 

unwanted echo (e.g. low reflectivity, echo top height). 

More advanced methods combine dual-polarization 

parameters with fuzzy logic or Bayesian classification. 

The first is inadequate and the second is not possible 

with the Bureau of Meteorology’s current radar 

network. The approach used here is to develop a 

Bayesian-based method using all available 

information.  

The classification scheme is a Naïve Bayes 

Classifier (Peter et al. 2013) intended for both Doppler 

and non-Doppler radars. Using knowledge of the 

geography, observation of the occurrence of echo 

types, and probability of detection (POD) maps, the 

classification scheme applies a logical refinement of 

class prior probabilities to the Naïve Bayes Classifier. 

The minimum objective is to classify observations as 

okay to assimilate, possible to assimilate, and to be 

excluded. The results must also improve on an 

existing method of thresholding to separate 

precipitation from non-precipitation. This paper 

focuses on the classification method applied to the 

Doppler radars only. 

2 AUSTRALIA’S DOPPLER RADARS 

Australia has 15 Doppler radars in its collection 

of over 60 radars. These are located in capital cities 

and areas where severe weather is common (Figure 

1). Geographically, they are in tropical and temperate 

regions, and most are coastal. They are a mixture of 

C-band and S-band, and 1° or 2° beam width. Each 

produces 14 PPI scans between 0.5° and 32°, every 6 

or 10 minutes, with 250 m or 500 m range resolution 

and 1° angle resolution. Each ray alternates PRF, for 

on-site dealiasing that yields a Nyquist velocity 

between ~13 m s
−1

 and 52 m s
−1

, depending on PRF 

choice. The signal undergoes on-site processing 

including noise-correction, SQI thresholding and zero-

velocity filtering, before the corrected reflectivity and 

Doppler velocity are sent off-site. Some Doppler 

radars also return uncorrected reflectivity and 

spectrum width, which provides further information that 

may be used for classification.  

Permanent ground echo is a problem because 

there are ‘holes’ in the scan where permanent echo 

has been consistently removed by the zero-velocity 

filter, but surrounding these areas a returned signal is 

relatively frequent. Side-lobe sea clutter also occurs 

frequently in some regions. Therefore a conventional 

POD map is of some use, provided that often-present 

clear-air echo is weaker than the ground echo. The 

zero-isodop filtering also removes some precipitation 

echo which can adversely affect classification. 
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Figure 1 Location of the Australian Doppler radars. 
Red circles are C-band radars, blue squares are S-
band radars. 

3 THE CLASSIFICATION SCHEME 

The classification scheme utilizes a range of 

feature fields, including texture (Hubbert et al. 2009; 

Kessinger et al. 2004) and spin (Steiner; Smith 2002) 

of reflectivity and velocity, spectrum width, echo top 

height, reflectivity, vertical gradient of reflectivity. The 

feature fields used are detailed in Table 1. Each 

feature field required a pdf describing the range of 

values for each class. To create this a manually 

classified data set was created using over 190 radar 

volumes across a selection of radars (from the whole 

network). Where need was apparent, individual pdfs 

were created for subsets of radars with similar 

operating characteristics. The values for each class 

were aggregated and normalized histograms 

produced. A range of pdfs were empirically fit to the 

histogram and the optimal fit was chosen (Figure 2). 

The pdfs (including composite pdfs) are triangular, 

trapezoid, normal, inverse normal, log normal, skew 

normal, truncated normal, gamma, inverse gamma, 

Laplace, composite of Laplace and normal (symmetric 

about y axis), composite of two Laplaces, composite of 

Laplace and skew normal, and composite of two log 

normals (log binormal). 

The classes manually classified (as per Table 2) 

include precipitation (stratiform, convective and 

shallow convective), chaff, insects, birds and bats 

(dusk/dawn dispersal), permanent ground clutter, 

anaprop ground clutter, side-lobe sea clutter, anaprop 

sea clutter, smoke and second-trip echo. The second 

trip echo was ultimately ignored for being rare and not 

clearly distinguishable. Smoke may also be ignored, 

e.g. in winter in the temperate regions of Australia. 

Note that stratiform and convective precipitation aren’t 

expected to be discriminated in this classification, but 

were given separate classes to help characterize the 

range of the feature field values they can encapsulate, 

and to better balance the prior probabilities to 

frequency of occurrence. It was also considered that 

values in the tails of distributions may not be reliable 

for classification, so the pdfs are truncated in some 

cases and the feature field not used if the value is too 

extreme. For example, reflectivity below −10 dBZ or 

Table 1. Feature fields used. Smoothing is done with a 3x3 Gaussian kernel. 

Field Function of  Description 

DBZH reflectivity reflectivity 

EHGT smoothed reflectivity echo top height to 4 dB 

EHGT2 smoothed reflectivity echo top height to −5 dB, where EHGT does not exist 

WAVG spectrum width spectrum width from weighted average using adjacent beams 

VTDL smoothed reflectivity vertical gradient of reflectivity 

ZTEX reflectivity variation of reflectivity in 2D kernel of 11×11 

VTEX dealiased radial velocity variation of velocity in 2D kernel of 15×15 

SPIN reflectivity change in sign of reflectivity gradient in 2D kernel of 19×19 

 

Table 2. Classes, their abbreviations, the number of points used for pdfs, the number of volumes, days 
and radars from which examples were drawn. 

Classes Abbrev. Num. pixels Num. volumes Num. days Num. radars 

Convective precipitation con 2853238 31 26 11 

Stratiform precipitation str 7638167 26 22 9 

Shallow convection shc 503052 9 10 7 

Chaff chf 193622 34 7 4 

Insects ins 8399359 61 29 12 

Birds/bats brd 49785 22 10 5 

Permanent ground clutter pe 145173 53 30 11 

AP ground clutter gc 373813 21 12 6 

Side-lobe sea clutter sl 735582 64 30 7 

AP sea clutter ap 366761 20 9 5 

2
nd

 trip echo 2tp 19417 5 2 1 

Smoke smk 645165 32 9 6 

 



above 50 dBZ is not used. Echo top height above 12 

km is ignored. Classification is made with whichever 

features are available. 

 
Figure 2 PDFs for ZTEX, from empirical fits of 
various functions. 

The prior probabilities were next determined. As 

we abandoned the assumption of equal prior 

probabilities for all classes, they are treated as weights 

and selected empirically. The prior probabilities can be 

spatially variable within the scan. Land-sea masks 

were created, and the distance from the coast 

calculated (positive over land and negative over 

water). The prior probability of sea clutter over land is 

zero, and conversely ground clutter over sea, with 

overlap at the coastline. Aerofauna echo has zero 

probability offshore. Chaff is only seen at a few radars, 

and is typically released over the ocean, or over little-

inhabited areas; its probability is zero at radars where 

it has not been observed. Recurring ground and sea 

echo is identified with POD and the prior probability is 

based on this. For ground clutter, if POD>0.2, then its 

probability is 0.1, else 0. Side-lobe sea clutter was 

given a minimum probability of 0.05 everywhere 

offshore, plus its POD. Precipitation can occur 

anywhere, as can smoke (blown offshore). Typical 

prior probabilities are listed, where the typical POD 

may be 0.4 in affected regions:  

con: 0.4 str: 0.5 shc: 0.25   
ins: 0.4 smk: 0.1 chf: 0.05 brd: 0.2 
gc: 0.1 pe: POD ap: 0.1 sl: POD 

 

4 RESULTS 

The classification scheme is tested by application 

to the manually-classified data set. Results are shown 

in the contingency tables, which hereafter have the 

manual classes in rows and generated classes in 

columns, so the diagonal represents an accurate 

result. Table 3 shows often better than 50% success 

at detecting the correct class (when combining 

precipitation classes). Note that 2
nd

 trip echo has been 

discarded from the generated classes. Collapsing the 

classes into three levels of desirability (Table 4), which 

is how the classification would ultimately be used, 

shows nearly 90% of precipitation is correctly 

identified. Important to note is the false alarm rate 

(FAR) of non-precipitation being identified as 

precipitation (italicized in Table 4). A low FAR is 

preferable for data assimilation. Since the repres-

entation of each class in the training data set is not in 

proportion to its occurrence in reality, this does not 

indicate the frequency with which precipitation would 

be affected by contamination. However, it does 

indicate the weaknesses. For example, any anaprop 

sea clutter may cause some contamination. 

At present, resources don’t permit creation of an 

independent manually-classified data set to test this 

against. The success of the scheme is assessed by 

monitoring the classification results. Some random 

examples are shown in Figure 3, Figure 4, and Figure 

5, which demonstrate varying success at identifying a 

range of classes. Generally these are considered to be 

successful. 

 

Table 3. Results of classing the manually trained dataset. Bold indicates a correct identification, and 
italics indicate a major incorrect identification. 

  Automatic classification 
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% con shc str ins smk chf brd pe gc ap sl 2tp 

con 41.9 6.8 34.7 1.1 9.0 0.1 0.3 1.0 4.3 0.6 0.2 0.0 

shc 4.1 48.3 10.9 6.1 4.2 0.3 9.1 3.8 4.8 6.8 1.6 0.0 

str 29.4 8.1 54.7 1.0 2.7 0.2 0.6 0.8 1.0 1.0 0.4 0.0 

ins 0.8 5.7 1.5 68.0 2.0 0.2 7.2 10.2 3.5 0.1 0.9 0.0 

smk 38.1 12.0 9.4 11.3 14.6 0.0 3.2 5.2 6.3 0.0 0.0 0.0 

chf 4.5 22.1 29.4 9.8 1.2 20.0 3.3 0.3 0.1 7.2 2.1 0.0 

brd 0.0 3.7 0.4 21.7 0.2 0.0 49.1 15.6 5.8 0.0 3.5 0.0 

pe 1.1 7.9 0.9 9.5 0.8 0.0 6.8 69.5 2.8 0.0 0.7 0.0 

gc 2.4 28.6 4.8 19.5 3.4 0.0 7.9 6.4 26.8 0.0 0.1 0.0 

ap 5.6 20.5 14.5 0.0 1.4 6.1 0.0 0.0 0.0 47.0 4.9 0.0 

sl 0.5 7.1 1.7 0.2 4.8 2.2 0.0 0.2 0.1 1.9 81.4 0.0 

2tp 1.0 17.1 0.7 56.2 0.6 0.2 3.7 0.6 1.2 2.9 15.8 0.0 

 



 

Figure 3 Melbourne, 14 May 2013 at 1400 UTC. Classification of precipitation (blues) and clutter (red and 
green). 

 

Figure 4 Yarrawonga, 13 February 2013 at 1000 UTC. Classification of nocturnal insects and isolated 
convective shower. 

 

Figure 5 Wollongong, 17 March 2013, 0600 UTC. Classification of convective showers and side-lobe sea 
clutter, some showers embedded within. 



Table 4. Classification results from Table 3 
collapsed into three classes. Percentage and total 
pixels (sum of rows) are shown. 
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Automatic classification 

% precip  clear air  clutter  Totals 

precip 88.6 5.7 5.7 10854876 

clear air 11.6 66.8 21.5 8798475 

clutter 25.9 9.9 64.3 1818974 

 

The minimum requirement for this method is to 

improve on an existing algorithm used to identify 

precipitation for QPE/QPF applications at the Bureau 

of Meteorology. This algorithm uses thresholds of 

vertical gradients of reflectivity and echo top height to 

decide whether a pixel is clutter or not. Reflectivity less 

than 5 dBZ is also discarded (marked as clutter). 

Applying this method to the training data set yields the 

results shown in Table 5, with the Bayesian method’s 

results prepared for comparison in Table 6. The most 

valid comparison is by considering only observations 

with reflectivity greater than 5 dBZ since that is how 

the observations are used for QPE. 

Table 5. Accuracy of existing method to 
discriminate precipitation and clutter, applied to 
training dataset. ‘All data’ means including 
anything less than 5 dB as clutter. 

All data DBZH > =5 dBZ 

% pr. cl. Totals pr. cl. Totals 

precip 79.2 20.8 10968684 90.3 9.7 9623226 

clutter 22.5 77.5 10902053 41.1 58.9 5978132 

 

Table 6. Data from Table 3 collapsed to two 
classes for comparison with Table 5. 

All data DBZH > =5 dBZ 

% pr. cl. Totals pr. ccl. Totals 

precip 88.6 11.4 10854876 91.1 8.9 9566022 

clutter 14.1 85.9 10617449 17.4 82.6 5978132 

 

The weaknesses of the old method are manifest 

where clutter of greater than 5 dB (primarily smoke, 

chaff, strong insect echo, and anomalous propagation 

sea clutter) is poorly detected. The new method is 

better at detecting these echo types, although they are 

still the most difficult to classify and so cause false 

alarms. The ability to detect precipitation is similar for 

the two methods, however.  

There is potential for improving the results with 

other techniques. For example, ensuring continuity of 

classes where classification is certain. Simple methods 

to convert localized wrong classifications to the 

surrounding correct classification could improve the 

appearance of the results, provided that the ‘correct’ 

classification can be selected. Alternatively, use of 

external information about precipitation, for example 

forecasts of probability of precipitation (PoP), could 

also reduce the false alarm rate (Table 7). In this 

example the following algorithm was applied. For 

PoP>0.4, use normal prior probabilities, for PoP<0.1 

use priors of 0.02, otherwise use half the normal prior 

probabilities. The detection of precipitation was 

reduced, but this may be improved by tuning the 

algorithm. 

Table 7. Results using probability of precipitation 
to limit the prior probability of precipitation in the 
Bayes classifier. 

 precip clutter Totals 

precip 86.9% 13.1% 10854876 

clutter 5.9% 94.1% 10617449 

 

5 APPLICATION TO ASSIMILATION 

The Bureau of Meteorology is running trials 

assimilating radial wind observations from 

precipitation. The NWP system consists of a 1.5 km 

resolution domain (variable grid) over the Sydney 

area, nested in the Australian Community Climate and 

Figure 6 The numbers of precipitation- and clear-air-derived radar observation during a summer period. 



Earth System Simulator (ACCESS) regional domain 

(Puri et al., 2010) at 12 km horizontal resolution. Using 

the output of the classification scheme, echo only from 

precipitation is selected for assimilation. Radial wind 

observations are assimilated hourly using 3D-Var. 

Before assimilation the raw observations undergo 

spatial averaging and thinning to reduce the 

observation density to separation of at least 4 grid 

spaces. This reduces the number of observations to 

about 1% of the original number, depending on 

coverage. 

Australian Doppler radars retrieve substantial 

clear air echo from insects during summer, which may 

provide a source of observations during dry periods 

(Figure 6). By classifying these echoes, they can be 

selectively input into the assimilation system. The 

initial objective is to produce observation minus 

background statistics for clear air echo along with 

precipitation echo. This can be used to investigate the 

observation error and bias of such observations, and 

so determine the relative suitability for assimilation. 

Results to date (Rennie 2013) examining a small 

number of examples—including when there is strong 

common orientation behaviour exhibited by insect 

migrants—have not indicated that the insect flight bias 

rules out the use of clear air echo for wind estimation. 

Future trials will be made to investigate the viability of 

assimilating clear air echo, and the impact on the 

forecast. By maintaining the class information, insect 

echo and precipitation echo can be treated 

independently by the assimilation system. 
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