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1.   ABSTRACT 
 

The atmosphere has been related to chaotic 
systems ever since Eduard Lorenz’s influential paper of 
1963. However, determining the existence of an 
atmospheric attractor and its intrinsic predictability is still 
an unresolved problem. 

In this study, 15 years of US composite radar is 
analyzed in an attempt to shed light on these questions. 
First, the atmospheric or rainfall field’s attractor is 
examined in a three-dimensional phase space defined 
by three weakly correlated properties of the rainfall 
fields. The fractal properties of this attractor are studied 
and compared to other well-known systems such as the 
Lorenz attractor to determine scaling processes within 
rainfall fields.     

Then, the intrinsic predictability of rainfall fields is 
mapped in the previously defined phase space. This 
predictability map shows a structure that reveals how 
the initial statistical properties of a rainfall field are 
related to its predictability. Consequently, this 
information would allow us to assess forecast quality of 
future events using only the initial conditions. 

This work also proofs statistically some well-
established beliefs about predictability of rainfall 
systems, such as the high predictability of frontal rainfall 
systems and the low predictability of isolated convective 
storms. 

 
2.   INTRODUCTION 

 
While there is an agreement of using ensemble 

prediction systems of perturbed initial condition (Toth 
and Kalnay, 1993) for predicting the weather, optimal 
methods to predict the predictability are still in debate 
(Smith et al, 1999). 

 
Since the acceptance that the atmosphere is a 

chaotic system (Lorenz, 1963), different studies have 
looked for attractors in worldwide climate (Grasberger, 
1986) or temperature (Nicolis and Nicolis, 1984) but 
without investigating the predictability consequences of 
the existence of this attractor. 

 
On the other hand, some researchers have 

studied the intrinsic predictability from ensemble NWP 
systems (Melhauser and Zhang, 2012) or radar images 
(Carbone et al, 2002). Even some studies have focused 
on predictability of precipitation from convective 
adjustment time-scale (Keil, 2013) or large-scale forcing 
(Jankov and Gallus, 2004). 

 
In this study a different approach is taken to 

assess the predictability by revisiting the chaos theory. 
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3.   DATA 
 

A large dataset is required to establish statistically 
robust conclusions about attractors and predictability. 
With this purpose, two composite mosaics over North 
America have been used. The first one is the NOWrad 
mosaic produced by the Weather Services International 
(WSI) Corporation. NOWrad is a three-step quality 
controlled product with a 15-minute temporal resolution 
and 2 km spatial resolution. These mosaics show the 
maximum reflectivity measured by any radar at each grid 
point at any of the 16 vertical levels. This data is available 
for the period from October 1995 to December 2007. The 
second dataset is produced by Weather Decision 
Technologies (WDT) and uses radar data from the entire 
Weather Surveillance Radar-88 Doppler (WSR-88D) 
network in the Continental United States (CONUS). This 
allows WDT to apply their most up-to-date, 
technologically advanced algorithms to provide superior 
quality radar data through the removal of false echoes 
and through the blending of multiple radars. WDT creates 
seamless radar mosaics with a high spatial resolution (1 
km) and temporal resolution (5 min) from January 2004 to 
April 2011. 

 
A common grid is defined for the two data set used in 

this study (Fig. 1).  The new 512x512 point’s grid has a 4 
km resolution. Each reflectivity map, Z, is converted to 
rainfall rate, R, by the relation, Z=300R1.5. The rainfall 
values are interpolated to the new grid and the highest 
value from both sources is chosen for the common period 
(01/2004 to 12/2007). After the up-scaling process in 
rainfall units the obtained field is converted to reflectivity. 
The temporal resolution of the new data set is 15 
minutes. The selected domain avoids the Rocky 
Mountains because their orographic effects over rainfall 
fields and the blockage they produce in the radar rainfall 
images.  

 
 

Figure 1.- Location domain. The red rectangle 
corresponds to the common domain on which all the 
reflectivity fields are smoothed. The blue contours 
represent the coverage of the reflectivity mosaics. 



4.   PREDICTABILITY IN LORENZ SYSTEM 
 
In 1963, Lorenz developed a three dimensional 

simplified mathematical model for atmospheric 
convection. His mathematical model, also known as 
Lorenz system, consists of three nonlinear ordinary 
differential equations representing the phase space 
evolution and it is formulated as:  
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Here x, y and z make up the system state, t is time, and 
σ, ρ, β are the system parameters.  
 

The Lorenz original parameter choice was σ=10, 
ρ=28, β=8/3. For these parameters the system is drawn 
towards a strange attractor (Fig. 2). An attractor is a set 
towards which a variable, moving according to the 
dictates of a dynamical system, evolves over time. An 
attractor is called strange when it has a fractal structure. 
A fractal is an object with some degree of self-similarity 
(exact or statistical) and with structure at arbitrarily small 
scales. Self-similarity means that object looks the same 
irrespective of the scales at which you inspect it. The 
similarity dimension (or box-counting dimension) is the 
simplest way to measure the degree of self-similarity. It is 
defined as the number of boxes N(ε) required to cover 
the object scales with the size (edge-length, ε) of the 
boxes. The dimension (d) is formulated as: 
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The calculation of this dimension in practice requires 

a prohibitive amount of time for experimental dynamical 
system. Therefore, the most widely used dimension 
estimation is the correlation dimension (Dc). To define 
Dc, the correlation sum, Cr, is defined as: 
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Where Θ is the Heaviside function, r is the radius of a 
sphere centered on a phase space point, Xi, on the 
attractor trajectory. The total number of points in the 
phase space is N.  

The correlation sum scales with the radius (Fig. 3) 
following a power law relation. 
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Where the exponent, Dc, is the correlation dimension. 
 

The Lorenz attractor (Fig. 2) assumes the famous 
“butterfly wing” pattern in the phase space. Applying the 
box-counting to the strange attractor of Lorenz model this 
gives d = 2.05. The correlation dimension technique (Fig. 
3) gives Dc = 2.06. Fractals usually have non-integer 
dimensions. Strange attractors appear in chaotic system. 

 
Consequently, Lorenz system is a chaotic system, 

which means it is impossible to have long-term 
prediction. This is because these systems are highly 
sensitive to initial conditions. Small differences in initial 
conditions (such as those due to rounding errors in 
numerical computation) yield widely diverging outcomes 
for such dynamical systems, rendering long-term 
prediction impossible in general.  

 
Predictability is the degree to which a correct 

prediction or forecast of a system's state can be made. In 
chaotic systems, different measurements can be used to 
measure the predictability of an initial point: 

 
1. Doubling times: !! = log  (2) log  ( 1 + ! 100) 
2. Lead-time (Tl): It’s defined as the saturation time of 

the error. 
3. Tangent-linear time: ! = Cov !!, !! !"#(!!, !!); 

When correlation has 0.5 value that corresponds to 
random perturbations, so Tangent-linear time (Tt) is 
defined at this point. 
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Figure 2.-3D plot of the Lorenz attractor in the phase 
space and 2D projection in the phase planes. 

Figure 3.-The log(r)-log(Cr) plot for determining the 
correlation dimension by means of the scaling region 
slope. 



 
Figure 4 shows the error (defined as the root mean 

square difference between the three phase state 
variables) in function of lead-time for two different Initial 
conditions. 

 
Computing the three prediction times previously 

defined for different initial points in the space of (x,y,z) ∍ [-
20,20 ; -20,20 ; 0,40], it can be observed (Fig. 5) the 
three indexes provides the same information and, 
consequently, they are equivalent. 

 

In the present work, the lead-time is used as the 
measurement for the predictability of the system. Once 
we have defined an index, we can study the local 
predictability of the Lorenz system according to its initial 
conditions. Figure 6 shows the predictability time 
structure obtained in the phase space. It can be observed 
that the predictability has a structure. Consequently, we 
can assign a predictability of the state just knowing the 
initial conditions of the system. 

 
 

5.   RAINFALL SYSTEM 
 
Once, the main aspects of a well-known chaotic 

system as Lorenz one have been revisited. The main 
goal of this work is to realize an analog study for the 
rainfall fields. From our data set, it’s obtained a 512x512 
pixel field. Even though, we define two states for each 
pixel (rain/no-rain), the phase space obtained for the 
combination of all these pixels is of the order of 5•1020. In 
our data set, there are 420’480 rainfall images. This 
means only a ~ 0.001% can be filled of the original 
phase space. Consequently, a new phase space has to 
be constructed by minimizing the number of variable to 
describe a rainfall field. The construction of the phase 
space is explained in subsection 5.1.  After a lower 
dimensional phase space has been constructed, the 
attractor of the rainfall fields is classified (subsection 5.2). 
The inherent predictability and the local predictability of 
this attractor is studied in the last subsection (5.3). 
 
5.1 Phase space construction 
 

In order to reduce the phase space, rainfall fields 
are characterized by different statistics variables. The 
statistic parameters used in the present work are: 

 
 Marginal Mean: Arithmetic mean of the rainfall 

pixels. 
 Standard Deviation: Standard deviation of the 

rainfall pixels. 
 Skewness: Third standardized moment of the 

rainfall pixels. 
 Kurtosis: Fourth standardized moment of the 

rainfall pixels. 
 Coverage: Percentage of rainfall pixels in 

function of total number of pixels. 

Figure 3.-RMSE error evolution in function of lead-time 
for two different Initial points of the Lorenz system.  

Figure 2.-Correlation between tangent-linear time and 
Lead-time (upper figure) and between lead-time and 
doubling time (lower figure) for the Lorenz system. 

Figure 6.-3D predictability map in the phase space for the Lorenz 
system. The predictability is measure as the lead-time. 



 Number of cells: Number of closed cells with 
an area bigger than 100 km2. 

 Power-spectrum slope: Slope of the radially-
averaged power spectrum. 

 Decorrelation distance: Distance at which the 
autocorrelation function has 1/e value. 

 Eccentricity: Eccentricity of the ellipse fitted 
over contour of 1/e. in the spatial 
autocorrelation field. 

 Orientation: Angle of the same ellipse. 
 
An important characteristic of the phase-space 

variables is that they are not correlated. The statistical 
parameters used to describe the rainfall field have 
been plotted in function of each other to analize the 
independence of them. It can be observed that some 
statistical parameters are highly correlated (Fig. 7). On 
the other hand, few statistical parameters are not 
correlated (Fig. 8). To define the phase space 
variables, just the uncorrelated variables are kept, 
whereas the correlated ones are removed. In the end, 
only three statistical parameters are used to define the 
rainfall images phase space: The marginal mean, the 
eccentricity and the decorrelation distance (or Area). 

 
5.2 Rainfall fields attractor 
 

Once the phase space variables are defined, the 

rainfall fields’ attractor can be studied. As defined 
previously, the density gives information about the 
attractor for an experimental system as rainfall field 
where the exact equations are not formulated.  

 
In Figure 9, the rainfall attractor is plotted. The first 

feature observed is the lack of a clear structure, as the 
butterfly wing of the Lorenz system had. It could be 
due to the scarcity of data as far as the data used is 
the time series instead of different realizations from 
perturbed initial conditions, but the density of points is 
quite similar to the obtained with the Lorenz system. It 
can be, most likely, the noise in the small scales 
caused by the fact that the reflectivity fields have some 
errors when measuring the rainfall (Zawadzki, 1975).  

 
The correlation dimension is used to evaluate the 

self-similarity of this attractor. In figure 10, it can be 
observed the effect of the noise in the small scales 
(the scale region begins for larger radius than in the 
Lorenz system, Fig. 3). The correlation dimension 
obtained is 1.94. It is a non-integer number, which 
means that the simplification of the complex rainfall 
system to a phase space of three dimensions still 
keeps this system as a chaotic system. 

 

Figure 7.-Scatter plot of Marginal mean and 
Standard deviations. The Pearson correlation is 
computed by the red fitted line. 

Figure 8.-Scatter plot of Marginal mean and 
Eccentricity. The Pearson correlation is computed 
by the red fitted line. 

Figure 10.-The log(r)-log(Cr) plot for determining the 
correlation dimension by means of the scaling region 
slope. 
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Figure 9.-3D plot of the density of points in the three statistical 
properties phase space for the rainfall fields. The numbers of events are 
per thousands.  



The fact that the correlation dimension is smaller 
than 2 is caused by the small, but still existing, 
correlation between the decorrelation distance and the 
marginal mean. This correlation reduces the degrees 
of freedom of the system. However, the fractal 
behavior of the system is clear and well fitted for the 
scaling region. 

 
Finally, it has to be mentioned the large-scales 

effect. The scaling region is narrower than the 
obtained with the Lorenz system. The effect of the 
small scales is caused by the measurements errors in 
the rainfall fields. The large-scale effect could be 
caused by the clustered behavior of rainfall fields 
around the large mean and correlation distance area. 
In other words, the statistical properties are less 
variable for these kinds of precipitation systems than 
for the others. 

 
5.3 Predictability of the rainfall fields 
 

The predictability of rainfall fields can be 
measure by different indexes. In this work, as was 
discussed in section 4. The lead-time (time which the 
saturation is achieved) is used to characterize the 
predictability of the system. Figure 11 shows the 3D 
predictability map of the rainfall fields in the three 

statistical parameters phase space. 
 
Even though, the boundaries of the surface of 

predictability are not well defined. It can be observed 
(in the right plot) that the interior part of the volume 
has a much more clear structure. In the 2D projection 
over the marginal mean-eccentricity plane (Fig. 12), it 
is clear the inside structure of the volume. 

 
From this predictability map, it can be concluded 

that just from three statistical parameters of the 
rainfall field, the predictability of the system can be 
assessed. Besides, it is proven the fact that frontal 
systems are more predictable than MCS systems 
and these systems are, at the same time, more 
predictable than Isolated storms (a well-known fact in 
meteorology but that have not been tested from a 
chaotic point of view). 

 
At this point, the predictability map tells us that 

the forecast lead-time depends only on some 
statistical parameters of the initial rainfall field. This 
information can be used to verified the add value or 
skill of a forecasting system. For this purpose, the 
variance of this map has to be studied. Figure 13 
shows the standard deviation (square of the 

Figure 12.-2D projection of the predictability 
map over the marginal mean-eccentricity plane. 

Figure 11.-3D predictability map in the phase space for the rainfall fields. The left side depicts the volume and the 
right side several planes are plotted in their actual position. Predictability is measure as the lead-time. 

Figure 13.-3D representation of the standard 
deviation of the predictability time. 



variance) of the predictability map. It can be 
observed that around 2 times the standard deviation 
will explain around the 95% of the variance. 
Consequently, in the area of longest predictability 
time an error of ±3 hours will explains a 95% of the 
variance of it.  

 
This feature can be observed also looking into 

the relation between the statistical variables and 
predictability. Figure 14 shows an example of high 
correlated (R2 = 0.77) relation between the 
decorrelation distance and the lead-time. The total 
variance explained is more than 80% with an error of 
around ±3 (as obtained by the standard deviation in 
the predictability map).  

 
 
6.   CONCLUSIONS 
 

In this study, 15 years of rainfall fields at 15-
minute temporal resolution have been used to study 
the predictability from a chaos theory point of view. 
The main conclusions can be summarized as: 

 
 Three uncorrelated statistical properties of the 

rainfall fields have been chosen to construct the 
phase space. 

 Rainfall fields in this phase space have a strange 
attractor with fractal structure and correlation 
dimension of 1.94.  

 The rainfall field system in this new defined 
phase space is a chaotic system. 

 A clearer interior structure can be observed in 
the predictability map. 

 Inherent predictability can be determined by the 
initial statistical properties of the rainfall field. 

 A ±3 hour error around the prediction time 
(computed by lead-time measurement) explains 
a 95% of the variance. 
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Figure 14.- Prediction time in function of the 
decorrelation distance. The Pearson correlation is 
computed by the red fitted line. 


