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1. INTRODUCTION 
 

The Minister of Environment Canada 
announced in January 2012 that the 
Meteorological Service of Canada’s (MSC) 
weather radar network will receive $45.2 
million for improved performance and 
upgrading to next-generation technology. 
With upgrades to the existing radar network, 
it is required to determine the consistency of 
our adjacent measurements and spatial 
coverage.  A condition for the successful 
inter-radar comparison between two radars 
is the accurate time-space synchronization 
in the middle region where the comparison 
is the most effective. 

The current Canadian weather radar 
network has an average inter-radar spacing 
of approximately 300 km. The long 
distances imply that an approach is needed 
that fully represents the Earth’s geoid. 

A review of the literature has indicated 
a number of statistical approaches to 
comparing data in the common radar 
volume. Here, we present a description of 
the theoretical basis for the geometrical 
evaluation of a common inter-radar space 
(CIS) utilizing a common spatial reference to 
offer a more accurate determination of the 
CIS. 
 
2. THE REFERENCE FRAME FOR CIS 
 

Since the radar locates the target 
volume in reference to the local reference 
system, it is necessary to convert local 
coordinates to a common “fixed” frame of 
reference. A geocentric coordinate system 
(GCS), in which the Earth is modeled as an 
oblate spheroid, was chosen as the prime 
framework with zero coordinates at the 
center of the Earth. 
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Schematic representation of the 
geometry of the two radars that measure the 
location of a common target at point C , is 
shown in Figure 1. Geometric position 
vectors of point C from the two radars 
relative to the locations of radars are the 

pink colored vectors ( CAh  and CBh ). Note 
that the pink vectors do not represent the 
curving rays of an actual radar beam. The 
local altitudes above the mean sea level are 

represented by green colored vectors ( hAA  

and hBB ). The geodetic position vectors 
given in terms of geographic longitude, 
latitude, and height, of two surface points 
( A and B ) of the geoid are shown as red 

colored vectors ( AOA  and BOB ) which  are 
perpendicular to the local horizons. The 
origins of the vectors ( AO and BO ) vary with 
latitude, but a more practical approach uses 
the geocentric position vectors of two 
surface points which are given as blue 

colored vectors (OA and OB ). 
  The position vector of a common target 
point of two radars relative to the GCS, the 

bold black vector (OC ) in Figure 1, is the 
composition of the three vectors: a position 
vector from the geocentric origin to the 
surface of the oblate geoid at the 
geographical latitude and longitude of a 
radar location, an altitude vector that is 
normal to the oblate spheroid surface at the 
point of the radar location, which represents 
the height of the radar antenna above mean 
sea level, and a third vector that is a local 
position vector of the common target point 
measured from the radar. The location of the 
same target point from two radars in 
reference to the GCS is given as a 
composition of two sets of the corresponding 
three vectors: 

 

CAAAOAOC hh ++=     

CBBBOBOC hh ++=     
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Since the two sets of three vectors describe 
the position of the same target with respect 
to the Earth centre, equating them results in 
one vector equation: 

CBBBOBCAAAOA hhhh ++=++  (1) 
Equation 1 results in three scalar 

equations that we will use to define a target 
point that is equidistant from both radars.   

_______________________ 
 

 
Figure 1. The geometric construction of the geocentric position vector of point C (bold black 

line) from the geodetic (red color), geocentric (blue color), and local point vectors (pink color) from 
two locations and altitudes (green color). 

_______________________ 
 
To obtain the explicit form of vector 

OC  as a function of radar polar coordinates 
(radar measured azimuth, elevation, and 
distance of point C) and geographic 
coordinates, we need to first convert the 

local position vector CAh and CBh from a 
local spherical coordinate to a rectangular 
coordinate. Second, we need to rotate the 
local frame to have its axes parallel with the 
Earth-fixed coordinate frame, where the 

yx − plane coincides with the Earth 

equatorial plane. The x  axis is permanently 
fixed in the direction of the Greenwich 
meridian while the z  axis extends through 
the North Pole.  

General considerations about all 
transformations will be done first for a 
general point P  and later will be applied to 
points A  and B , Figure 2. For clarity and 
further reference to the vectors and its 
components, all transformations are 
presented graphically and the resulting 
formulas could be found in literature.  
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Figure 2. Space rotation of local Cartesian frame reee ˆ,ˆ,ˆ λφ (blue color) around point hP  to 

get the frame zyx eee ˆ,ˆ,ˆ  (green color) with axes parallel to the geocentric frame (red color). 
_______________________ 

 
2.1 Converting spherical to rectangular 
coordinates  
 

Transformation of spherical coordinates 
of point C  (azimuthα , elevation β  and 
distance r ), i.e. components of position 

vector CPh , to rectangular coordinate 

( reee ˆ,ˆ,ˆ λφ ) has the form (Figure 3):  
 

rhhhh CPCPCPCP ++= λφ    (2) 

φφ αβ erCPh ˆcoscos=    (2a) 

λλ αβ erCPh ˆsincos=    (2b) 

rrh erCP ˆsin β=      (2c) 
 

Where azimuthα  increases from φê to 

λê  and elevation β  increases from 

λφ ee ˆ,ˆ plane to rê .  Index h stands for a 

point at altitude h . For the moment, the 
antenna height will be neglected. 

Next we need to rotate the local frame 

reee ˆ,ˆ,ˆ λφ to get parallel axes with the 

geocentric OXYZ  frame. 
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Figure 3. The geometry for computations rectangular coordinates of point C 

),,( rhhh CPCPCP λφ  in ( reee ˆ,ˆ,ˆ λφ ) frame from azimuth Pα , elevation Pβ  and distance r . 
_______________________ 

 
2.2  The space frame rotation 
 

Space rotation of local Cartesian frame 

reee ˆ,ˆ,ˆ λφ  (blue color) around point hP to get 

the frame zyx eee ˆ,ˆ,ˆ  with axes parallel to the  

geocentric frame OXYZ  is presented in 
Figure 2. Details for space rotation of local 
Cartesian frame around point hP  to get the 
frame with axes parallel to the geocentric 
frame are shown in Figure 4. 

From right side of Figure 4 (a, b, c), unit 
vectors of local Cartesian frame reee ˆ,ˆ,ˆ λφ  

have following components in frame parallel 
to the geocentric frame zyx eee ˆ,ˆ,ˆ : 
 

zPyPPxPP eeee ˆcosˆsinsinˆcossinˆ φλφλφφ −+=
       … (3a) 

yPxP eee ˆcosˆsinˆ λλλ +−=    (3b) 

zPyPPxPPr eeee ˆsinˆsincosˆcoscosˆ φλφλφ ++=
       … (3c) 
 

When we substitute above reee ˆ,ˆ,ˆ λφ  
unit vectors in (2), we get position vector of 
point C  in local frame with axes parallel to 
the geocentric frame:

_______________________ 

( ) xPPPPPPPPPPxh erCP ˆcoscossinsinsincoscossincoscos λφβλαβλφαβ +−=   (4a) 

( ) yPPPPPPPPPPyh erCP ˆsincossincossincossinsincoscos λφβλαβλφαβ ++=   (4b) 

( ) zPPPPPzh erCP ˆsinsincoscoscos φβφαβ +−=          (4c) 
_______________________ 

 
2.3 Altitude vector 
 

From geometry shown in Figure 4, we 
see that the local vertical line (zenith line) 

coincides with rê direction and therefore rê  

has a latitude angle Pφ  in respect to the 
Earth equatorial plane ( yx − plane). The 
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φê

λê
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longitude angle Pλ  is the same in both 
geodetic and geocentric system of 

references since the vertical axes are on the 
same line (see left side of Figure 4). 

_______________________ 
 

 
Figure 4. Details of space rotation of local Cartesian frame reee ˆ,ˆ,ˆ αβ (blue color) around 

point hP  to get the frame zyx eee ˆ,ˆ,ˆ (green color) with axes parallel to the geocentric frame. Sub 

figures on the right side show the components of unit vectors βê  (a) , αê  (b) , and rê  (c).  
_______________________ 

 
 To get a coordinate of the altitude 

vector hPP  in local frame with axes parallel 
with the geocentric frame and the origin of 

axes in point. Since hPP has the same 

direction as geodetic radius of point P  and 

the intensity of vector hPP  is the height 

Ah (or altitude, or ellipsoidal height) of point 

hP  which is the local vertical distance 

between the hP point and the reference 
ellipsoid.  

 
_______________________ 

 

( )zyxAh eeehPP ˆsinˆsincosˆcoscos φλφλφ ++=  
_______________________ 
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zê

Pλ
yê
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yê

xê
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Or in explicit vector form for each 
component when we add the height of the 
radar antenna at location P , PH : 
 

( ) xPPxh eHhPP ˆcoscos λφ+=   (5a) 

( ) zPAyh eHhPP ˆsincos λφ+=   (5b) 

( ) zPAzh eHhPP ˆsinφ+=    (5c) 
 
 

2.4  Geocentric coordinates of ellipsoid 
 

To get geocentric coordinates of point 

P , blue vector OP  in Figure 1, we have to 
notice that in general the radius vector from 
geocentric origin O  will not be normal to the 
surface of the oblate spheroid (except at the 
poles and the equator). Therefore, we will 
have two latitudes, geodetic (angle Pφ ) and 

geocentric latitude (angle '
Pφ ), see Figure 5. 

_______________________ 
 

 
Figure 5. Geodetic ( '' ZOX p ) and geocentric ( XOZ ) coordinate frames. 

_______________________ 
 

Appendix 1 gives details how to derive 

position vector OP : 
_______________________ 

 

( )[ ]zPyPPxPP
P

eeee
e

aOP ˆsin1ˆsincosˆcoscos
sin1

2

22
φλφλφ

φ
−++

−
=   (6) 

_______________________ 
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Where a is the Earth equatorial radius and 
e  is eccentricity (see Appendix 1). 
 
2.5 Position vector of a target point in 

geocentric coordinate frame 
 

From Figure 1, position vector of a 
target point C determined from local frame 
of reference in point hP  is given by: 

CPOPCPPPOPOC hhhh +=++=  
 

The first two vectors in the middle 
section of the equation are constant and 
depend on the geographical coordinate of 
surface point hP . Only the last vector in the 
equation depends on the local coordinates 
of point C.  

If we substitute all vector components 
from previous sections, (4a,b,c) , (5a,b,c), 
and (6),  we are getting the explicit form of 
position vector and its components of target 
point C. 

_______________________ 

( )[ ] xPPPPPPPPPPhxx erOPOC ˆcoscossinsinsincoscossincoscos λφβλαβλφαβ +−+=  
                  … (7a) 

( )[ ] yPPPPPPPPPPhyy erOPOC ˆsincossincossincossinsincoscos λφβλαβλφαβ +++=  
                  … (7b) 

( )[ ] zPPPPPhzz erOPOC ˆsinsincoscoscos φβφαβ +−+=        (7c) 
_______________________ 

 
Where local parameters are given by:  
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3.   MATHEMATICAL EQUATIONS OF CIS 
 
Equation 7 shows how vector 

components of position vector OC  are 
composed from vectors that are related to 
point P . Identical equations may be derived 
for points A and B . Since the position of 
point C in geocentric frame is the same no 
matter from which starting point the position 
vector is constructed, it must satisfy the 
condition that vector components are equal. 
From that condition we get three scalar 
equations after substituting (7a,b,c) with 
points A and B in  (1): 

_______________________ 
 

( ) =+−+ AAAAAAAAAAhx rOA λφβλβαλφβα coscossinsincossincossincoscos  

( )BBBBBBBBBBhx rOB λφβλβαλφβα coscossinsincossincossincoscos +−+   (9a) 
 

( ) =+++ AAAAAAAAAAhy rOA λφβλβαλφβα sincossincoscossinsinsincoscos  
( )BBBBBBBBBBhy rOB λφβλβαλφβα sincossincoscossinsinsincoscos +++   (9b) 

 
( ) =−+ AAAAAhz rOA φβαφβ coscoscossinsin  
( )BBBBBhz rOB φβαφβ coscoscossinsin −+           (9c) 

_______________________ 



All geographical parameters are 
assumed to be known; only 6 local spherical 
coordinates are unknown. And because they 
are coupled with three Equations (9a,b,c) we 
have only 3 independent variables, spherical 
coordinates from one of two local frames. 
Since we are analyzing a specific case when 
point C is at same distance from both local 
frames: 

rCBCA hh == , 

we have an additional reduction of degrees 
of freedom, from 3 to 2.  

Specifying the directions AA βα ,  from 
point A gives the remaining two equations. 
Solving Equations 9a,b,c we can find the 
other three dependent  coordinates: 

BBr βα ,, .  
After evaluation of the above equations 

we get: 

_______________________ 
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( ) ( )AABBB

hzhz

KKK
OBOAr

βααββ ,32cos1tancos −−
−

=          (12) 

_______________________ 
 

Explicit forms of constants and 
parameters for chosen locations A and B  for 

AA βα ,  values are given in Appendix 2.  

Since for each pair of AA βα , values,  
there is at most one ray from radar B  
( BB βα , ) that meets it with equal distances 
( r ) from both radars, multiple solutions in (10) 
because of ± signs are prohibited. Therefore,  
procedures for obtaining BBr βα ,, from 
Equations (10, 11, and 12) must use filters, 
and restrictions, that will reject all solutions 
except the physical one.  

 
4. ANALYZE 
 
 Theoretical CIS formulas (10, 11, 12) 
obtained in the previous section enclose three 
main CIS characteristics: the size, direction 
and slope of CIS. Visual presentation of these 
characteristic is given in the next three 
subsections.  
   
 
 
 

4.1 CIS size 
   

As an example of CIS calculation, the 
WKR (King City, lat=43.96, lon= -79.57, 
alt=360m) and WSO (Exeter, lat=43.37, lon= -
81.38, alt=303m) radars were used. 

 
  

 
 

Figure 6. Graphical presentation of 
calculated equal-distance ( )AAr βα ,  as a 
function of azimuth and elevation of WKR 
radar for an angle resolution of o1 . 

 



The graphical presentation of ( )AAr βα ,  

for WKR and WSO is shown in Figure 6 for o1  
angle resolutions.  

As we expected the equal-distance is 
symmetrical in regards to the vertical plane in 
WKR-WSO direction and the number of 
equidistant points decreases with the elevation 
angle. The shape of ( )AAr βα ,  doesn’t 
change with angle resolutions, only the density 
of points is changing. 

More practical presentation of CIS is in 
the local Descartes reference system as it is 
shown in Figure 7 for two angle resolutions, 

o1  (top) and o1.0 (bottom). The shape of the 
CIS is more like a wall as the angle resolution 
increases.  

 

 
 

 
Figure 7. Graphical presentation of 

calculated CIS in the local WKR radar 
Descartes reference system ( )yxZ ,  for angle 

resolutions o1  (top) and o1.0 (bottom). 
 
The size of CIS depends on the 

geographical positions of two radar locations, 
mostly of their relative distances as it was 
shown in Figure 8. Three colors (red, black, 

and blue) were marked three different radar 
distances ( 321 ,, xxx ). For the third case (blue) 

was sketched CIS length ( L ) and height ( H ) 
for a chosen maximal radar range ( d ) and 
troposphere height ( maxH ) . 

 

 
Figure 8. Sketch of the horizontal (top) 

and vertical (bottom) cross section of relative 
positions of radar locations and the CIS plane 
of symmetry for the maximal radar range 
d and troposphere height maxH . The size of 

CIS, length L and height H , depends on 
relative distance x of pair of radars. 

 
 
4.2 CIS direction 
 

Figure 9 shows how equal-distances are 
changing with elevation in WKR-WSO 
direction for angle resolutions o1  (top) and 

o1.0 (bottom).  With higher angle resolution 
there is a more precise determination of the 
WKR-WSO direction, o246  versus o3.246 . 
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Figure 9. Graphical presentation of calculated 
CIS distance in WKR-WSO radar direction as 
a function of WKR elevation, ( )ABA

r βα −
,  for 

angle resolutions o1  (top) and o1.0 (bottom). 
 
4.3 CIS slope  
 

The collection of points at equal-distance 
from two radars belongs to the plane of 
symmetry as it were sketched in Figure 10a 
and 10b. In the local reference systems the 
plane of symmetry is tilted for  Aδ  and Bδ .  

The tilted angles Aδ  and Bδ  are 
comparable when both radars are at similar 
altitudes (Figure 10a). As the difference in 
altitude between radars increases, the 
difference between tilted angles also 
increases (Figure 10b).  

 

 
 
  Figure 10a. The schematic cross section 

of position of the plane of symmetry that 
includes equal-distances between A and B 
radars that are at similar altitudes and the 
local verticals that are tilted for Aδ and Bδ  
angles. 

 

 
  Figure 10b. Same as 10a but with a 

significant altitude difference. 
 

The amount of CIS tilt is a function of 
radar’s distance and altitude differences, i.e. 
geographical coordinates. 

 
5. DISCUSSION AND SUMMARY 
 

The presented study is an attempt to 
clarify the geometry of defining the common 
inter-radar space. The essence of the 
methodology is presumption that if we want to 
compare measurements from two radars we 
need to first establish accurate coordinates of 
a common target volume. Since the radar 
locates the target volume in reference to the 
local reference system, it is necessary to 
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convert local coordinates into a common 
geocentric “fixed” frame of reference.  

As it was shown, for two radars A and B, 
from vector equation of position components 
of a common target point C, we can calculate 
coordinates of points that are in equal distance 
from both radars. As a result, for each pair of 
independent coordinates AA βα , , of point C at 
equal distance from both radars, the radius 
distance r  is determined by equation: 

 

( ) ( )AABBB

hzhz

KKK
OBOAr

βααββ ,32cos1tancos −−
−

=

 
Furthermore, for same pair of 

independent variables AA βα ,  , measured by 
radar at location A, there are coordinates 

BB βα ,  ( r  is the same) of radar at location B 
that point to the same target C given by: 

 

 
_______________________ 
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Where explicit forms of constants and 
parameters are given in Appendix 2. 

In the presented work we have shown 
how to determine the CIS and from pure 
geometrical perspective the CIS is not a 
simple rectangle wall with constant 
dimensions. The size, direction and slope of 
the CIS vary with geographical locations of 
radars and also with maximal range of the 
radars. The derived formulas will be a 
complete and accurate method for comparison 
that can be used with the large inter-radar 
distances of the Canadian network. Obtained 
formulas are very accurate but not yet 
operationally suitable since they determine the 
mathematical points of equal distance not the 
common radar pulse volumes from operational 
discrete scanning angles. Therefore, the next 
steps should be the inclusion of the technical 
characteristics of the radars in the operational 
regime and the conversion between the 
geometric elevation and the antenna axis 
elevation. 
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Appendix 1. 
 

To get coordinates of OP  vector in the 
geocentric frame we need first to find the 
line equation of line )(xfP that have PO  
and P  points, in the fixed XOZ reference 
system, Figure 5. We will do it using 
condition that the tangent on geodetic ellipse 
is perpendicular to the )(xfP line. Since 

value POP  is the same for any longitude 
(meridian), for simplicity we can chose zero 
longitude for our calculations (Grinch 
meridian). 

 

PPPPP OOxkxmxf +=+= φtan)(  (A1) 
 

To find Pk , i.e. POO , we will use 
condition that both equations (A1) and 
equation of ellipse (shown below in 
canonical form) must be satisfied. 

12

2

2

2

=+
b
z

a
x

      (A2) 

 
where a>b>0 and ax ≤ . Applying 
derivation on the equation of ellipse we get: 
 

022
22 =+

dx
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a
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2

za
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−=        

   
Which for point P has specific value: 
 

2

2

az
bx

dx
dz

P

P

P

−=      

     
Using trigonometry definition of tan in 

Fig 5, we have relation between geocentric 
coordinate of point P  and radial angle '

Pφ : 

p

p
P x

z
='tanφ       (A3) 

Substituting above equation for first 
derivation of ellipsoid equation in point P : 

 

2'

2

2

2

2

2

tan a
b

a
x
z

b
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dx
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P

P

PP

P

P φ
−=−=−=  

This tangent is perpendicular to the ellipsoid 
and also to the circle that has radius in point 
P   that crossing ordinate Z  at point PO : 

'
2

2

2'

2 tan

tan

11tan P

PP

P b
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a
b

dx
dz

φ

φ

φ =
−

−=−=

 
Or: 

PP a
b φφ tantan 2

2
' =  

 
Instead using equatorial radius 

ma 0.1373786=  
and polar radius  

mb 3142.7523566=   
we can use eccentricity squared 

14990379694006.02 =e . From 
definition of eccentricity: 

2

2
2 1

a
be −= ,  

we get 

2
2

2

1 e
a
b

−=  

which substituted in previous 'tan Pφ equation 
gives final relation between geodetic latitude 

Pφ  and geocentric latitude '
Pφ : 

 

PP e φφ tan)1(tan 2' −=     (A4) 
 

Four Equations (A1, A2, A3, A4) are 
sufficient to obtain four unknown 
( PPPP OOzx ,,, 'φ ) as a function of geodetic 

latitude Pφ . 
From (A3) and (A4): 
 

Ppp exz φtan)1( 2−=     (A5) 
 
From (A1) at P point: 
 

PPPP OOxz += φtan     (A6) 
 



From (A5) and (A6): 
 

PPPPp OOxex +=− φφ tantan)1( 2  
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Substitute (A7) in (A5): 
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Substitute (A7) and (A8 in (A2) and multiply 
by 4e : 
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−= , after substitution in 

above equation and multiple by 2a : 
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Substitute 2
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a
b

−= value and for 

P

P
P φ

φ
φ

cos
sintan =  in above equation: 

 
 

422
2

2
2 1

sin
cos eaeOO

P

P
P =








−+

φ
φ

 

 
Which become: 
 

42
2

22
2

sin
sin1 eaeOO

P

P
P =







 −
φ

φ
 

 

P

P
P

e

e
aOO

φ

φ
22

2

sin1

sin

−
=     (A9) 

 
Where negative sine is for north hemisphere 
and positive for south hemisphere.  Or : 
 

P

P
P

e
eaOO

φ

φ
22

2

sin1

sin

−
−=    (A10) 

 
In the vector form we have: 
 

z

P

P
P e

e
eaOO ˆ

sin1

sin
22

2

φ

φ

−
−=   (A11) 

 
To find final expression for P  

coordinates we need to substitute (A10) in 
(A7) and (A8): 

 

P

P
p

e
ax

φ

φ
22 sin1

cos
−

=     (A12) 

 
( )

P

P
p

e
eaz

φ

φ
22

2

sin1

sin1

−

−
=     (A13) 

 
For three dimensional case Z  

coordinate is the same while px coordinate 
should be decomposed to x and y 
components as   px  projection on x  and 

y axes. If longitude angle for point P  is 

pλ (Figure 4, left side) than we have 
following equations:  

 

P

P

P
p

e
ax λ

φ

φ cos
sin1

cos
22−

=   (A14) 

 

P

P

P
p

e
ay λ

φ

φ sin
sin1

cos
22−

=   (A15) 

 
Or in concise vector form:

_______________________ 

( )[ ]zPyPPxPP
P

eeee
e

aOP ˆsin1ˆsincosˆcoscos
sin1

2

22
φλφλφ

φ
−++

−
=          (A16) 

_______________________ 



 
Appendix 2: 
 

Explicit forms of parameters and 
constants for chosen locations A and B for  

 

AA βα , values are given in logical order:

_______________________ 
 

( )( ) ( )( )
( )( )222

222

133123

32231331212322321

MLMLLL

MLMLMLMLLLMLMLILa

−−−

−−+−−=
 

 
( )

( ) ( ) ( )[ ]
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+−−+

−++−−
−−

=

3232133123
133123232132232

322312
2
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2

MILJMLMLLL
MLMLIMILJLMLMLL

MLMLLI
b  

 
( )( ) ( )( )222 32322332323223222 MILJLLMILJMLMLLIc +−−+−=  

_______________________ 
 

( )( )222 322323 MLMLILd −−=  

111 K
OBOA
OBOAIL

hzhz

hxhx

−
−

+=  

111 K
OBOA
OBOA

JM
hzhz

hyhy

−

−
+=  

232 K
OBOA
OBOAIL

hzhz

hxhx

−
−

−=  

232 K
OBOA
OBOA
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hzhz

hyhy

−
−

−=  

343 K
OBOA
OBOAIL

hzhz

hxhx

−
−

−=  

343 K
OBOA
OBOA

JM
hzhz

hyhy

−
−

−=   

BBI λφ cossin1=    

BI λsin2 =    

BBI λφ coscos3 =   

AAA

AAA

AAAAI

λφβ
λβα

λφβα

coscossin
sincossin

cossincoscos4

+
−

=
 

BBJ λφ sinsin1=  

BJ λcos2 =  

BBJ λφ sincos3 =

AAA

AAA

AAAAJ

λφβ
λβα

λφβα

sincossin
coscossin

sinsincoscos4

+
+

=
 

BK φsin1=  

BK φcos2 =  
( )

AAA

AAAAK
φβα

φββα
coscoscos

sinsin,3
−
=
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