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1. INTRODUCTION

The Minister of Environment Canada
announced in January 2012 that the
Meteorological Service of Canada’s (MSC)
weather radar network will receive $45.2
million for improved performance and
upgrading to next-generation technology.
With upgrades to the existing radar network,
it is required to determine the consistency of
our adjacent measurements and spatial
coverage. A condition for the successful
inter-radar comparison between two radars
is the accurate time-space synchronization
in the middle region where the comparison
is the most effective.

The current Canadian weather radar
network has an average inter-radar spacing
of approximately 300 km. The Ilong
distances imply that an approach is needed
that fully represents the Earth’s geoid.

A review of the literature has indicated
a number of statistical approaches to
comparing data in the common radar
volume. Here, we present a description of
the theoretical basis for the geometrical
evaluation of a common inter-radar space
(CIS) utilizing a common spatial reference to
offer a more accurate determination of the
CIs.

2. THE REFERENCE FRAME FOR CIS

Since the radar locates the target
volume in reference to the local reference
system, it is necessary to convert local
coordinates to a common “fixed” frame of
reference. A geocentric coordinate system
(GCS), in which the Earth is modeled as an
oblate spheroid, was chosen as the prime
framework with zero coordinates at the
center of the Earth.
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Schematic representation of the
geometry of the two radars that measure the
location of a common target at point C , is
shown in Figure 1. Geometric position
vectors of point C from the two radars
relative to the locations of radars are the

pink colored vectors (A,.C and B,C). Note

that the pink vectors do not represent the
curving rays of an actual radar beam. The
local altitudes above the mean sea level are

represented by green colored vectors ( AA,

—_

and BB, ). The geodetic position vectors

given in terms of geographic longitude,
latitude, and height, of two surface points

(Aand B) of the geoid are shown as red

colored vectors (O, A and OgB) which are
perpendicular to the local horizons. The
origins of the vectors (O, and Oy ) vary with

latitude, but a more practical approach uses
the geocentric position vectors of two
surface points which are given as blue

colored vectors (OAand OB).
The position vector of a common target
point of two radars relative to the GCS, the

bold black vector (OC ) in Figure 1, is the
composition of the three vectors: a position
vector from the geocentric origin to the
surface of the oblate geoid at the
geographical latitude and longitude of a
radar location, an altitude vector that is
normal to the oblate spheroid surface at the
point of the radar location, which represents
the height of the radar antenna above mean
sea level, and a third vector that is a local
position vector of the common target point
measured from the radar. The location of the
same target point from two radars in
reference to the GCS is given as a
composition of two sets of the corresponding
three vectors:

—_ — —

OC =0A+AA +AC
OC = OB +BB, +B,C
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Since the two sets of three vectors describe
the position of the same target with respect
to the Earth centre, equating them results in
one vector equation:

OA+AA +AC=0B+BB, +B,C (1)
Equation 1 results in three scalar
equations that we will use to define a target

point that is equidistant from both radars.

Z‘NonhPom
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Figure 1. The geometric construction of the geocentric position vector of point C (bold black
line) from the geodetic (red color), geocentric (blue color), and local point vectors (pink color) from

two locations and altitudes (green color).

To obtain the explicit form of vector

—_—

OC as a function of radar polar coordinates
(radar measured azimuth, elevation, and
distance of point C) and geographic
coordinates, we need to first convert the

—_— —

local position vector A ,C and B, C from a

local spherical coordinate to a rectangular
coordinate. Second, we need to rotate the
local frame to have its axes parallel with the
Earth-fixed coordinate frame, where the

X — Y plane coincides with the Earth

equatorial plane. The X axis is permanently
fixed in the direction of the Greenwich
meridian while the Z axis extends through
the North Pole.

General considerations about all
transformations will be done first for a
general point P and later will be applied to
points A and B, Figure 2. For clarity and
further reference to the vectors and its
components, all transformations are
presented graphically and the resulting
formulas could be found in literature.



Figure 2. Space rotation of local Cartesian frame éwéﬂ,ér (blue color) around point B, to

get the frame €, e,,€, (green color) with axes parallel to the geocentric frame (red color).

2.1 Converting spherical to rectangular P.C —rsingé (20)
coordinates r r
Transformation of spherical coordinates Where azimuth & increases from é¢ to

of point C (azimuth « , elevation £ and

distance r ), i.e. components of position

— . € €, plane to €. . Index h stands for a
vector P,C , to rectangular coordinate s 2P "

€, and elevation /3 increases from

point at altitude h . For the moment, the
antenna height will be neglected.
Next we need to rotate the local frame

(€,,€,,€,) has the form (Figure 3):

ph_(f _ Ph—é¢ + qdn + ph—c @) é¢ ,€,,€, to get parallel axes with the
r

— . geocentric OXYZ frame.

PhC¢ =TrCcos3cosa €, (2a)

RC,=rcosfsina g, (2b)



Figure 3. The geometry for computations rectangular coordinates of point C
(R.C,,RC,,RC,) in(€,,¢,, € ) frame from azimuth oz, , elevation /3, and distancer .

2.2 The space frame rotation

Space rotation of local Cartesian frame
€,.€,,€, (blue color) around point P, to get

the frame €, ey,

geocentric frame OXYZ is presented in
Figure 2. Details for space rotation of local
Cartesian frame around point P, to get the

€, with axes parallel to the

frame with axes parallel to the geocentric
frame are shown in Figure 4.
From right side of Figure 4 (a, b, c), unit

vectors of local Cartesian frame é¢,él €,

have following components in frame parallel

to the geocentric frame €,,€,,€,:

€, =sing, Cos A€, +sing, sind, & —cosg, €,

(3a)

(3b)

€, =C0S¢, COS A, €, +COSg, Sin A, €, +sing, €,
(3¢)

A

€, =-sIin4, e, +CoS4 €,

A

When we substitute above é¢,é/1 N
unit vectors in (2), we get position vector of
point C in local frame with axes parallel to

the geocentric frame:

|

P.C, = r(cos 3, cosa, sing, cos A, —Cos S, Sinap Sin A, +Sin B, cosd, oS A, )&, (4a)
RC, = r(cos S, cosa, Sin g, SinA,+Cos S, Sin a, COS A, +Sin B, COS ¢, Sin A, )éy (4b)
P,C, = r(~—cos S, cosa, CoS@, +sin 3, sing, g, (4c)

2.3 Altitude vector

From geometry shown in Figure 4, we
see that the local vertical line (zenith line)

coincides with €, direction and therefore €,

has a latitude angle ¢, in respect to the
Earth equatorial plane ( X — Y plane). The



longitude angle A, is the same in both references since the vertical axes are on the

geodetic and geocentric system of same line (see left side of Figure 4).
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Figure 4. Details of space rotation of local Cartesian frame éﬂ,éa,ér (blue color) around
point P, to get the frame éx,éy,éz (green color) with axes parallel to the geocentric frame. Sub

figures on the right side show the components of unit vectors éﬂ (@), éa (b) , and ér (c).

—_—

T%t a coordinate of the altitude the intensity of vector PP, is the height

veptor PP, in Ioc.al frame with axes_pfalrallel h, (or altitude, or ellipsoidal height) of point
with the geocentric frame and the origin of o ) ]

) ) ) — P, which is the local vertical distance
axes in point. Since PP, has the same _
between the P, point and the reference

direction as geodetic radius of point P and L
ellipsoid.

PP, = h, (cos$cos A8, +cos gsin A8, +sin 4,




Or in explicit vector form for each
component when we add the height of the

radar antenna at location P, H:

2.4 Geocentric coordinates of ellipsoid

To get geocentric coordinates of point

P, blue vector OP in Figure 1, we have to

notice that in general the radius vector from

geocentric origin O will not be normal to the
surface of the oblate spheroid (except at the
poles and the equator). Therefore, we will

have two latitudes, geodetic (angle ¢, ) and

geocentric latitude (angle ¢'P), see Figure 5.

PR, =(h, +H, )cosgcos 8, (5a)
FTDhy =(h, +H, )cosgsin &, (5b)
PR, = (hy + H, Jsingé, 50)

-

Figure 5. Geodetic ( X 'OpZ') and geocentric ( XOZ ) coordinate frames.

Appendix 1 gives details how to derive

position vector OP :

Py a

OP = —[cos¢P C0S A€, +COS g, Sin 4,6, + (1— ez)sin ¢Péz] (6)

\1-¢€’sin® ¢,




Where ais the Earth equatorial radius and
e Is eccentricity (see Appendix 1).

2.5 Position vector of a target point in
geocentric coordinate frame

From Figure 1, position vector of a
target point C determined from local frame

of reference in point P, is given by:

OC =0P+PP, +P,C=0P, +P,C
H_J

The first two vectors in the middle
section of the equation are constant and
depend on the geographical coordinate of

surface point P, . Only the last vector in the

equation depends on the local coordinates
of point C.

If we substitute all vector components
from previous sections, (4a,b,c) , (5a,b,c),
and (6), we are getting the explicit form of
position vector and its components of target
point C.

OCx =[OP,, +r(cos 8, cosa, sin @, €S A, —COS B, Sin ar, SiN A, +5in B, COS g, €S A, )6,

(7a)
&y = [OPhy +r(cos S, cosa, sin ¢, SinA,+C0s B, Sin a,, COS A, +Sin S, COS g, Sin A, )]éy

(7b)
OC. =[OP,, + (- cos B, cos, COs g, +sin B, sing, ), (7c)

Where local parameters are given by:

a
OB, =| -——=—=—=+h, [c0S¢, COS},
" \1-¢€sin® ¢, " i i
(8a)
a .
OPR, =| ———————+Nh, |c0S¢, Sin 4,
v Jl-esin?g, T
(8b)
a(l—e?) :
OP,, =| ———=—+h, [sing, (8cC)
Yo J1-etsin?g, "

3. MATHEMATICAL EQUATIONS OF CIS

Equation 7 shows how vector

components of position vector OC are
composed from vectors that are related to
point P . Identical equations may be derived
for points Aand B . Since the position of
point C in geocentric frame is the same no
matter from which starting point the position
vector is constructed, it must satisfy the
condition that vector components are equal.
From that condition we get three scalar
equations after substituting (7a,b,c) with
points Aand Bin (1):

OA,, +r(cosa, cos ,sing, cos A, —sina, cos S, sin A, +sin 3, COS@, COS A, ) =
OB, + r(Cosa, COS S, Sin @, COS Ay —SiN ag COS By Sin Ay +SiNn B, COS ¢, COS Ay ) (9a)

OA, + r(cosa, cos B, sing,sin A, +sina, cos 8, cos A, +sin 3, cosg, sin 1, ) =
OB,, + r(cos a, COS 3, Sin @, Sin A, +Sina, COS B, COS A, +Sin B, COS ¢, Sin A, ) (9b)

OA,, +r(sin S, sin ¢, —cosa, cos 3, COS ¢, ) =
OB,, +r(sin /3, sin ¢, —COSar, COS B, COS by )

(9c)




All geographical parameters are
assumed to be known; only 6 local spherical
coordinates are unknown. And because they
are coupled with three Equations (9a,b,c) we
have only 3 independent variables, spherical
coordinates from one of two local frames.
Since we are analyzing a specific case when
point C is at same distance from both local
frames:

Ac]-

B,C|=r.

we have an additional reduction of degrees
of freedom, from 3 to 2.

Specifying the directions «,, 5, from
point A gives the remaining two equations.

Solving Equations 9a,b,c we can find the
other three dependent coordinates:

rog,fBs.
After evaluation of the above equations
we get:

b? - 2(c-a)d —c)=blyb? — 4(d —c)(d - a)

Qg =arccos i\/

10

2lb? +(c-af | (0

5. = arctan] < ot (LIM 3— L3M1)— /1 cos? r (J2L3+ 12M 3) a
o L3M2-L2M3

r =
cos 3, (tan B K1-cosa K 2)-K3(e,, B,)

Explicit forms of constants and
parameters for chosen locations Aand B for
a,, B, values are given in Appendix 2.

Since for each pair of ,, 3, values,

there is at most one ray from radar B

(ag, Pg) that meets it with equal distances
(r) from both radars, multiple solutions in (10)
because of * signs are prohibited. Therefore,
procedures for obtaining I, oy, ﬂB from
Equations (10, 11, and 12) must use filters,

and restrictions, that will reject all solutions
except the physical one.

4. ANALYZE

Theoretical CIS formulas (10, 11, 12)
obtained in the previous section enclose three
main CIS characteristics: the size, direction
and slope of CIS. Visual presentation of these
characteristic is given in the next three
subsections.

4.1 CIS size

As an example of CIS calculation, the
WKR (King City, lat=43.96, lon=-79.57,
alt=360m) and WSO (Exeter, lat=43.37, lon= -
81.38, alt=303m) radars were used.

Equi-distance from WKR-WSO radars

300 10
e

200 © elevation (Deg)

azimuth (Deg)
Figure 6. Graphical presentation of
calculated equal-distance r(aA,ﬂA) asa
function of azimuth and elevation of WKR
radar for an angle resolution of 1°.



The graphical presentation of r(aA, ﬂA)

for WKR and WSO is shown in Figure 6 for 1°
angle resolutions.

As we expected the equal-distance is
symmetrical in regards to the vertical plane in
WKR-WSO direction and the number of
equidistant points decreases with the elevation

angle. The shape of r(a,, 3, ) doesn't

change with angle resolutions, only the density
of points is changing.

More practical presentation of CIS is in
the local Descartes reference system as it is
shown in Figure 7 for two angle resolutions,

1° (top) and 0.1° (bottom). The shape of the
CIS is more like a wall as the angle resolution
increases.

CIS from WKR and WSO radars
in the local WKR reference system

20
15-
E
N g
0.l
200 e
400
0 200
Y (km) 200 -200 X (km)
CIS from WKR and WSO radars
in the local WKR reference system
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0 . 200
W 0
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Figure 7. Graphical presentation of
calculated CIS in the local WKR radar

Descartes reference system Z(X, y) for angle

resolutions 1° (top) and 0.1° (bottom).

The size of CIS depends on the
geographical positions of two radar locations,
mostly of their relative distances as it was
shown in Figure 8. Three colors (red, black,

and blue) were marked three different radar
distances ( X;, X,, X;). For the third case (blue)
was sketched CIS length (L) and height (H )
for a chosen maximal radar range (d ) and
troposphere height (H

max) )

Figure 8. Sketch of the horizontal (top)
and vertical (bottom) cross section of relative
positions of radar locations and the CIS plane
of symmetry for the maximal radar range

d and troposphere height H .. - The size of

CIS, length L and height H , depends on
relative distance X of pair of radars.

4.2 CIS direction

Figure 9 shows how equal-distances are
changing with elevation in WKR-WSO

direction for angle resolutions 1° (top) and
g p

0.1° (bottom). With higher angle resolution
there is a more precise determination of the

WKR-WSO direction, 246° versus 246.3°.



The CIS distance in a WKR-WSO radar direction, azAo=246 Deg
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Figure 9. Graphical presentation of calculated
CIS distance in WKR-WSO radar direction as

a function of WKR elevation, I, (ﬂA), for

angle resolutions 1° (top) and 0.1° (bottom).
4.3 CIS slope

The collection of points at equal-distance
from two radars belongs to the plane of
symmetry as it were sketched in Figure 10a
and 10b. In the local reference systems the

plane of symmetry is tilted for &, and J;.

The tilted angles &, and &, are

comparable when both radars are at similar
altitudes (Figure 10a). As the difference in
altitude between radars increases, the
difference between tilted angles also
increases (Figure 10b).

plane of symmetry

Figure 10a. The schematic cross section
of position of the plane of symmetry that
includes equal-distances between A and B
radars that are at similar altitudes and the
local verticals that are tilted for 6, and J,

angles.

planelof symmetry

Figure 10b. Same as 10a but with a
significant altitude difference.

The amount of CIS tilt is a function of
radar’s distance and altitude differences, i.e.
geographical coordinates.

5. DISCUSSION AND SUMMARY

The presented study is an attempt to
clarify the geometry of defining the common
inter-radar space. The essence of the
methodology is presumption that if we want to
compare measurements from two radars we
need to first establish accurate coordinates of
a common target volume. Since the radar
locates the target volume in reference to the
local reference system, it is necessary to



convert local coordinates into a common OA_ -0B,_,
geocentric “fixed” frame of reference. r=

As it was shown, for two radars A and B, cos 3, (tan B, K1-cosa K2)-K3(a,, B,)
from vector equation of position components _
of a common target point C, we can calculate Furthermore, for same pair of
coordinates of points that are in equal distance independent variables aA,ﬂA , measured by
from both radars. As a result, for each pair of radar at location A, there are coordinates

independent coordinates &, 5, , of point C at s, B (I is the same) of radar at location B

equal distance from both radars, the radius that point to the same target C given by:
distance r is determined by equation: '

b? - 2(c-a)(d —c)+|bly/b? - 4(d —c)d - a)
2b? +(c-a)|

Qg = arccos J_r\/

aretan cosag (LIM 3— L3M1)— /1 cos® &, (32L3+ 12M 3)
P L3M2-L2M3
Where explicit forms of constants and
parameters are given in Appendix 2.
In the presented work we have shown
how to determine the CIS and from pure REFERENCES:
geometrical perspective the CIS is not a
simple rectangle wall with constant Donaldson, N. 2010. Monitoring Canadian
dimensions. The size, direction and slope of Weather Radars with Operational
the CIS vary with geographical locations of Observations, 6™ European Conference
radars and also with maximal range of the on Radar Meteorology (ERAD), Sibu,
radars. The derived formulas will be a Romania. 239-243.
complete and accurate method for comparison Gourley, J.J. et al. 2003. Evaluating the
that can be used with the large inter-radar calibrations of radars : A software
distances of the Canadian network. Obtained approach. 31* International Conference
formulas are very accurate but not yet on Radar Meteorology, Seattle, WA,
operationally suitable since they determine the USA, American Meteorological Society,
mathematical points of equal distance not the 459-462.
common radar pulse volumes from operational Montopoli, M. et al. 2012. Radar inter-
discrete scanning angles. Therefore, the next calibration analysis: potential use for
steps should be the inclusion of the technical weather radar networks, 7" European
characteristics of the radars in the operational Conference on Radar Meteorology and
regime and the conversion between the Hydrology (ERAD), Toulouse, France.

geometric elevation and the antenna axis
elevation.



Appendix 1.

To get coordinates of OP vector in the
geocentric frame we need first to find the

line equation of line f(X)that have O,

and P points, in the fixed XOZ reference
system, Figure 5. We will do it using
condition that the tangent on geodetic ellipse

is perpendicular to the f,(X) line. Since

value O, P is the same for any longitude

(meridian), for simplicity we can chose zero
longitude for our calculations (Grinch
meridian).

fo (X)=mpoX+k, =tang,x+ 00, (A1)

Tofind K , i.e. OO, , we will use

condition that both equations (A1) and
equation of ellipse (shown below in

canonical form) must be satisfied.

x* z?

?4_?:1 (A2)

where a>b>0 and X < a. Applying
derivation on the equation of ellipse we get:

2X 2z dz
—2+—2— =0
a- b® dx
a2 __x
dx za’

Which for point P has specific value:

dz X,b?
= 2

dx|p Z,a

Using trigonometry definition of tan in
Fig 5, we have relation between geocentric

coordinate of point P and radial angle ¢;,:

. z b
tang, =— (A3)
Xp
Substituting above equation for first
derivation of ellipsoid equation in point P :

dz|  x,b*  b* b
dxlp  z;a®  Zp 2 tangpa’
Xp

This tangent is perpendicular to the ellipsoid
and also to the circle that has radius in point

P that crossing ordinate Z at point O, :

1 1 a’ .
tang, = — - o’ :b—ztanqﬁp
dx|,  tang,a’

Or:
2

. b
tan ¢ :?tan 1

Instead using equatorial radius
a=6378137.0m

and polar radius
b =6356752.3142m

we can use eccentricity squared
e? =0.006 694 379 99014 . From

definition of eccentricity:

, . b?
e=l-2
we get
b? )
PORE

which substituted in previous tan ¢P equation
gives final relation between geodetic latitude
#, and geocentric latitude gy, :

tan g, = (1-e*)tan g, (A4)
Four Equations (A1, A2, A3, Ad) are

sufficient to obtain four unknown

(Xp, Zp,#p, 00, ) as a function of geodetic

latitude ¢ .
From (A3) and (A4):

2
z,=X,(1-e")tang, (A5)
From (A1) at P point:

Z, =X, tang, + 00, (A6)



From (A5) and (A6):

x,(1—e*)tan g, = x, tan g, + 00,

00,
Xo =~~~ (A7)
e tan ¢,
Substitute (A7) in (A5):
_ a2
2, =-00, =% (A8)
e

Substitute (A7) and (A8 in (A2) and multiply
by e’

2 1 +(1—62)2 o
a’tan® ¢, b?

P

2
Since — = 1—g? , after substitution in
a

above equation and multiple by a’:

l 2
0,’ —2+b—2 =a’e*
tan“ g, a

2
Substitute —- = 1—e?value and for
a

_sing,
CoS ¢,

tan g,

in above equation:

2
OOPZ(MH—&J - a%*
sin” g

Which become:

00.2 1-e’sin’ g, _ a2t
"1 sin’g,

e’[sin g, |
J1-e*sin? g,

Where negative sine is for north hemisphere
and positive for south hemisphere. Or :

00, =¥a (A9)

2 -
e~ sin
00, = —a—_¢P (AL0)
\1-e?sin® g,
In the vector form we have:
— e’sing
00, =-a P_¢§ (A12)

\1-e?sin’ ¢ "
p

To find final expression for P
coordinates we need to substitute (A10) in
(A7) and (A8):

X, = a_ 005¢ (A12)
J1-e’sin’ ¢,
o)
z,= a(l_eﬂ (A13)

J1-e’sin’ g,

For three dimensional case Z
coordinate is the same while Xy coordinate

should be decomposed to x and y
components as X, projection on X and

y axes. If longitude angle for point P is

A, (Figure 4, left side) than we have
following equations:

coS
X = a;ﬁpcos Ao (A14)

P J1-e%sin? g,
cos ¢,

Yy = a————
P 1-e?sin? g,

Or in concise vector form:

sin A, (A15)

—_

J1-e?sin’ g,

OP = A[cowp COS A€, +COSd, Sin A€, + (1— ez)sin ¢Péz] (A16)




Appendix 2:

o a,, P values are given in logical order:
Explicit forms of parameters and

constants for chosen locations A and B for

= (L1? ~122(LaM 2 L2M3Y’ + 2L1L2(LIM 3~ L3M1)L3M 2 - L2M 3)
~(L32 - L2?(LIM3 - L3M1}

—12L1(L3M 2 - L2M 3)’
b=2{-L2(L3M2-L2M3)[L1(J2L3+ 12M 3)+ 12(L1M 3— L3M 1)]
+(L3? - L2? LIM 3 L3M1YJ2L3+ 12M 3)

¢=212L2(L3M 2 L2M3)J2L3+ 12M3)— (L3 — L22(J2L3+ 1 2M3)?

d=(L3?-122(L3M2—L2M3)? 14 =cosa, cos B, sin g, cos A,

— —sina, cos S, sin A
L1:|1+MK1 - ap ﬂA A
OA,, -0OB,, +sin S, C0S¢, COSA,
OA, -OB Jl=sing,sin 4
Ml:JleﬁKl J2—cos¢/81 B
z hz - B
J3=cosg,sin 4
L2=13- OAhx Oth K2 ¢B B - -
OA, -0B,, J4=cosa,cosB,sing,sin i,
M2:J3_0Ahy_OBhy K2 +S?naACOSﬂA?OSﬂA
OA,, -0OB,, +sin S, oS¢, Sin A,
L3=14- g:x 82” K3 El;s'”‘/ﬁ;
z hz =COS ¢y
M3z g4 2Py OBy o K3(cx,, B, )=sin B,sin g,

z hz
I1=sin ¢, cos 4,
12=sin 4,
| 3=cos ¢, cos A,

—COSx, COS 3, COS P,
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