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1. Introduction 
 
The NWS is required to provide 
precipitation type guidance within 200 km 
of all radars.  This is a rather difficult chall-
enge primarily because radars cannot see 
all the way to the surface and so elevated 
melting layers may not be detected and 
because surface observations (ASOS) are 
rather sparsely spaced.  Additionally, 
ASOS are known to have some biases in 
detecting freezing rain and are unable to 
detect ice pellets.  A new winter surface 
classification algorithm is under develop-
ment at NSSL.  This poster presents details 
important to the development of one phase 
(the generation of a background class) of 
this algorithm. 
 
2. Operational Progression 
 
The steps for creating a conus-wide precip-
itation type analyses are as follows.  Step 1: 
Create a conus-wide background classi-
fication (or first-guess) of precipitation 
type using numerical model analyses or 
short-range forecasts.  Step 2: Port the 
background classification into the ORPG 
and use observed radar data to filter out 
areas where precipitation is not occurring.  
Step 3: Use dual-polarized observations to 
refine the background class.  Step 4: Export 
the final classification as a stage II product 
that can be viewed by forecasters.  The 
stage II product can be “stitched” together 
to create a conus-wide precipitation-type 
analysis that is updated in real time and 
provides forecasters with a storm-wide 
view of the event as it is evolving.   
 

The aim of this project is to assess limi-
tations that are imposed while creating a 
background class. 
 
3. The choice of background 

classification algorithm 
 
There are two approaches to creating a 
background class.  The explicit approach 
uses model forecasts of hydrometeor mix-
ing ratios as the primary means to distin-
guish between precipitation type cate-
gories.  Although this method provides a 
classification that is consistent with the 
model-forecast (or analyzed) wind, ther-
mal, and hydrometeor fields if the model 
fails to produce precipitation in the correct 
location, then no background class is avail-
able.  Earlier work demonstrates the back-
ground class is necessary.  The implicit 
approach, which is the approach used in 
this project, uses profiles of wetbulb temp-
erature, humidity, etc to infer the precip-
itation type at the ground.  There are five 
implicit schemes that are tested here.  
 

 
Figure 1: Locations of sounding sites used in the 
validation of the background algorithms. 
 



These are the Baldwin1, Baldwin2 (B1, 
B2; Bald-win et al. 1984), Bourgouin (BG; 
Bourg-ouin 2000), Ramer (RA; Ramer 
1993), and NSSL (NS; Schuur et al. 2012) 
schemes.  The B1 and B2 schemes are 
identical save for the way in which snow 
(SN) and ice pellets (IP) are discriminated 
from one another.  These schemes diag-
nose four categories of precipitation: SN, 
rain (RA), IP, and freezing rain (FZ).  The 
Bg scheme has the same four categories 
when used operationally.  However, it has 
certain conditions for which IP and FZ 
cannot be discriminated.  In the operational 
version of the code, one or the other type is 
randomly selected.   For the purposes of 
this study, the Bg code is revised to pro-
duce an IP/FZ mix in such circumstances.  
The RA and NS schemes diagnose five 
categories: the same four mentioned above 
plus a IP/FZ mix.   
 
In order to gauges which algorithm per-
forms best, soundings that occur coincident 
with observations of IP and FZ are collect-
ed over a ten-year period.  Any time such a 
sounding is identified, all sites are examin-
ed and any sites where SN or RA occur are 
also collected.  The sites used are shown in 
Fig. 1.  Profiles of wetbulb temperature 
along with the number of soundings for 
each sounding class are provided in Fig. 2.  
Only those sites that have a human obser-
ver are able to report IP, leading to fewer 
IP profiles than for the other classes.  
 

 
Figure 2: Observed wetbulb temperature profiles for 
the SN, RA, IP and FZ profiles (colored curves).  
Means are shown as thick, solid lines.  The 273-K 
isotherm is given as a dashed line. 

Also note that the primary distinction 
between IP and FZ is the depth and 
maximum temp-erature of the elevated 
warm layer.   
 
Table 1 shows the hit rates for each alg-
orithm.  For all algorithms, the hit rates for 
SN and RA are quite high.  Biases become 
more evident through consideration of the 
hit rates for IP and FZ.  For example, the 
B1 scheme has a known bias toward IP, 
leading to rather high hit rates for this 
class.  This comes at a cost to the scheme’s 
ability to correctly diagnose SN and FZ.  
The NS scheme also appears to have a 
rather high bias toward diagnosing the 
IP/FZ mix, causing it to have lower hit 
rates for the pure designations of IP and 
FZ.  Most schemes have low hit rates for IP 
and FZ.  Deeper inspection reveals that IP 
are most commonly misdiagnosed as FZ 
and vice-versa.   
Table 1: The hit rates for the different algorithms.  
In Bg, NS, and RA, the second value corresponds to 
the hit rate if one assumes the IP/FZ mix is a hit (if 
that category is diagnosed). 

 
As one might expect, the horizontal dis-
tribution of precipitation type can vary 
from scheme to scheme.  This is demon-
strated using the background class (as 
calculated using the Rapid-Refresh anal-
ysis) at 0300 UTC 22 Feb 2013.  At this 
time, the B1 and B2 schemes have a simple 
RA-to-SN transition over southern Ken-
tucky (Figs. 3a,b).  The Bg scheme has a 
transition zone that includes IP, IP/FZ mix, 
and FZ that extends from southern Ind-
iana/Ohio to southern Kentucky (Fig. 3c).  
The NS scheme has a broader transition 
zone that is shunted slightly west and ex-

SN
654

RA
545

IP
131

FZR
422

wetbulb

 SN RA IP FZ 
B1 86.7 96.1 89.6 28.4 
B2 97.1 96.1 56.0 28.4 
Bg 92.6 96.1 50.4/60.0 48.8/55.7 
NS 94.1 96.4 26.4/70.4 40.3/78.9 
RA 94.9 99.6 25.6 65.4/66.1 



tends farther south than that in Bg (Fig. 
3d).  Last, the RA scheme produces a zone 
of FZ over western Kentucky and southern 
Indiana (Fig. 3e). 
 

 
Figure 3: The precipitation type at 0300 UTC 22 
Feb 2013 created using the Rapid-Refresh analyses.  
Blue-SN, green-RA, yellow-IP, red-FZ, orange-
IP/FZ mix. The schemes are shown in the following 
order: B1, B2, Bg, NS, and RA. 

The analyses in Fig. 3 can be validated 
against observations collected as a part of 
the Precipitation Identification Near the 
Ground (PING; https://www.nssl.noaa.gov 
/projects/ping; Elmore et al. 2013) project.  
The PING project collects crowd-sourced 
observations of precipitation type that are 
reported by citizen observers.  The PING 
observations of precipitation type between 
0200 and 0400 UTC 22 Feb are provided in 
Fig. 4  At this time, there is a broad trans-
ition zone of various forms of intermediate 
precipitation types (IP, FZ, IP/SN mix, etc) 
over central Illinois, Indiana, southern 
Ohio, and northeastern Kentucky.  It app-
ears, then, that none of the algorithms were 
entirely accurate in their placement of the 
transition zone.  However, the NS scheme 
is the closest and, by virtue of its rather 
broad region of IP/FZ mix, best captures 
the character of the observed precipitation 
type.  Similar comparisons of other events 
yields the same result. 
 

 
Figure 4: PING observations of precipitation type 
between 0200 and 0400 UTC 22 Feb 2013.  The 
colors are as in Fig. 3. 
 
4. Horizontal variability in precipitation 
type 
 
The high spatial variability of precipitation 
type in the transition zone of Fig. 4 is a 
curiosity and prompts one to question what 
the horizontal variability in precipitation 



type is like.  To better gauge this, obser-
vations within prescribed radii of each 
PING observation of SN, RA, IP, and FZ 
are collected.  The percentage of these that 
agree with the given observation are calcul-
calculated and presented in graphical form 
in Fig. 5.  For all categories, the rate of 
agreement decreases as the distance (or 
radii) increases.  The SN and RA obser-
vations have a comparatively low hori-
zontal variability as demonstrated by the 
higher rates of agreement while IP and FZ 
have rather high variability.   

 
Figure 5: Voroni analysis of the spatial variability of 
PING observations as a function of the radius away 
from an observation of a given class. 
 
The exact rates of agreement for certain 
distances are provided in Table 2.  For a 
radius of 3 km (the grid spacing of the 
high-resolution Rapid-Refresh model), the 
rate of agree-ment for FZ is only 33%.  In 
other words, for every FZ observation, only 
one-third of the area within 3 km of that 
observation is also getting FZ.  As the 
radius is increased to 5 km (the average 
downwind drift of a radiosonde in the 
lowest half of the troposphere), the agree-
ment for FZ drops to 28%.  For a distance 
of 13 km (the grid spacing of the Rapid-
Refresh model), the agreement drops to 
21%.   
 
The above may indicate one may never see 
hit rates for FZ and IP that rival those for 

SN and RA, no matter what approach is 
taken for the background classification 
algorithm.  A detailed examination of the 
forms of precipitation that occur in close 
proximity to FZ and IP suggest that these 
types of precipitation usually occur as a 
part of a mix that is dominated by FZ and 
IP and to a lesser extend, SN and RA.  
Hence, the choice to diagnose an IP/FZ 
mix may pro-vide the public with the most 
accurate description of the current weather 
conditions.   
 
Table 2: The rates of agreement for observations 
within a given radii of SN, RA, FZ, and IP 
observations. 

 
There are two caveats to consider from the 
above arguments.  The first is that the 
PING observations are heavily weighted 
toward urban areas (not shown).  One 
would expect a higher spatial variability in 
urban areas given the variations in building 
density, tree maturity, traffic, etc.  It is un-
known to what degree the precipitation 
type varies in rural areas.  Second, the 
PING program has only been in existence 
nationwide for one winter season.  There 
were no broad scale IP or FZ events during 
this season.   
 
5. Analysis/forecast uncertainty 
 
To gauge the effects of the analysis and 
forecast uncertainty on the accuracy of a 
given algorithm, the Rapid-Update-Cycle 
(RUC; Benjamin 1989) model analyses and 
01-, 06-, and 12-h forecast soundings that 
correspond to the observed soundings in 
Fig. 2 are collected.  The wetbulb profiles 
for these soundings are provided in Fig. 6.  
Notice that the distributions and means are 

 3 km 5 km 13 km 
SN 87% 85% 81% 
RA 86% 83% 78% 
IP 37% 34% 30% 
FZ 33% 28% 21% 



very similar to the observed soundings. 
Yet, there are subtle variations between an 
observed sounding and its RUC conter-
parts.  This is exhibited using the unbiased 
kernel density distributions of the diff-
erence between the RUC analyses/forecasts 
and the observations in Fig. 7.  Only the 
distributions at the surface are shown, but 
similar distributions are found throughout 
the lowest 5000 m above ground level.  
Note that the maximum density decreases 
and the spread increases as lead time in-
creases.  This is consistent with initial 
condition uncertainty and error growth in 
mesoscale models.   
 

 
Figure 6: Wetbulb temperature profiles from the 
RUC model analyses and forecasts with select lead 
times (colored lines).  Means are given as thick 
black curves and the 273-K isotherm by the dashed 
line. 
 
 

 
Figure 7: Kernel density distributions for the 
different precipitation types and forecast lead times. 
 
The unbiased kernel density distributions 
are used to create an array of perturbations 
on the observed soundings.  Allowing each 
sounding to have 1000 perturbations.  
These sounding arrays represent the range 
of likely analyses and forecasts that could 
be expected for this modeling system and 
others with similar grid spacings and phy-
sical parameterizations.  The arrays of 
soundings are then fed to each of the back-
ground algorithms described in Section 3 
and hit rates calculated.  The hit rates are 
provided in Table 3.  DISCUSS 
 
Table 3: The hit rates for the different algorithms 
using the perturbed soundings.  In Bg, NS, and RA, 
the second value corresponds to the hit rate if one 
assumes the IP/FZ mix is a hit (if that category is 
diagnosed). 

 SN RA IP FZ 
B1 66.3 89.7 3.9 20.4 
B2 63.8 94.8 60.8 27.5 
Bg 87.9 97.8 48.9/60.0 41.5/47.1 
NS 89.8 96.8 18.2/50.8 24.5/54.3 
RA 97.4 93.0 6.6/20.0 23.0/42.3 

 
 
6. Conclusions 
 
Various contributors to decreased accuracy 
in a background classification algorithm for 
the new winter surface hydrometeor class-
ification algorithm have been considered.  



These include the uncertainty introduced 
by the choice of algorithm, the horizontal 
variability of the precipitation type, and the 
analysis/forecast uncertainty.  All things 
combined, it is clear that SN and RA are 
able to well detected regardless of the 
above uncertainties.  However, IP and FZ 
suffer substantially.  Using a mixed cate-
gory helps improve hit rates in a statistical 
sense, but it is still desirable to have an in-
dependent FZ category as pure FZ storms 
can be catastrophic.  More attention will be 
paid to broad scale FZ events in the future 
to see how these can be effectively treated.   
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