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1. INTRODUCTION 

Range oversampling techniques can be 
utilized to reduce the variance of estimates and/or 
reduce observation times. Adaptive 
pseudowhitening is a range oversampling 
technique that was implemented on the single-
polarization National Weather Radar Testbed 
phased array radar (NWRT PAR) to reduce 
scanning times. With the advent of the dual 
polarization upgrade of the NEXRAD (Next 
Generation Radar) network, it is natural to look at 
ways to apply range oversampling processing to 
dual-polarization estimates. Obtaining accurate 
dual-polarization estimates is a challenge with the 
current scanning strategies and processing on the 
WSR-88D (Weather Surveillance Radar – 1988 
Doppler), but adaptive pseudowhitening can 
reduce the standard deviation of estimates by over 
a factor of two in certain situations. To quantify the 
performance of this technique, simulations were 
carried out and analyzed. Oversampled, dual-
polarization data were also processed with the 
new dual-polarization adaptive pseudowhitening 
algorithm to quantify its performance. 

Although this technique was implemented on 
WSR-88D data, it is also applicable to data 
collected with phased array weather radars. The 
electronic scanning capability of phased array 
antennas lends itself particularly well to range 
oversampling techniques because any number of 
pulses can be transmitted at a particular beam 
position without worrying about antenna rotation. 
This allows flexibility for shorter dwell times or 
dwell times that are tailored to particular 
conditions. If we want to use dwell times that are 
consistent with the single-polarization dwell times 
on the WSR-88D, adaptive pseudowhitening can 
improve the estimates of dual polarization 
variables without having to increase scan times. 

 

2. THEORY 

Conventional weather radars sample signals 

at a rate of , where  is the duration of the 
transmitted pulse. Range oversampling by a factor 
of L is accomplished by sampling the time series 
data at an increased rate so that L complex 

samples are collected during the time . These 
range-oversampled signals can then be processed 
with a digital matched filter or some other type of 
range oversampling technique. In this case, 
adaptive pseudowhitening will be used to improve 
the quality of meteorological variables. Adaptive 
pseudowhitening is one of a class of techniques 
that applies a linear transform to range-
oversampled signals followed by incoherent 
averaging over L oversampled range gates. 

The basic structure of the dual-polarimetric 
adaptive pseudowhitening algorithm follows the 
efficient implementation introduced in Curtis and 
Torres (2011). To simplify ground clutter filtering, 

both the “H” and “V” time series matrices, VH  and 

VV , are partially transformed using a unitary 

matrix U. The complex-valued time-series 
matrices are L-by-M and correspond to a particular 
resolution cell that matches the duration of the 

transmitted pulse . The unitary matrix, U, comes 
from the eigendecomposition of the Hermitian, 
normalized, range-correlation matrix for the 

horizontal channel, C U ΛU*

H

T

V . The Λ  matrix is 

the diagonal matrix of eigenvalues, and we 
assume that the eigenvalues are ordered in size 

with 0  ≥ 1   ≥ … ≥ 1L   ≥ 0. It is also assumed 

that the system is using simultaneous 
transmission and reception of both polarizations, 
and that the pulses from both channels are 
matched so that the range-correlation matrices 

from both channels are equal; i.e., C C
H VV V . In 

Torres (2009), the case with unmatched channels 
is addressed which ensures that the dual-
polarimetric variables are unbiased. Accurately 

measuring C
HV is important because measurement 

errors can cause biases in reflectivity and reduce 



the effectiveness of adaptive pseudowhitening 
(Torres and Curtis 2012). 

The equation for the partial transformation is 

given as follows: X U V*

, ,

T

H V H V . This notation is 

used to show the multiplication of both time series 
matrices resulting in two partially-transformed 

matrices XH
 and XV

. A ground clutter filter can be 

applied to the rows of both of these matrices. It is 
much more efficient than applying a ground clutter 
filter to the completely transformed matrices 
corresponding to each meteorological variable. 

Next, we compute L range-oversampled 

covariances ( )ˆ ( )
H

l

X
R k , ( )ˆ ( )

V

l

X
R k ,  and  0( )ˆ

HV

l

X
R  from 

the partially-transformed data; the variable k 

corresponds to the lag. For the classical pulse-pair 

estimators, we need lags 0 and 1 from XH
 and lag 

0 from XV
. Adaptive pseudowhitening utilizes 

matched-filtered estimates to find the appropriate 
variable-specific transformation at each range 
gate. For the single-polarization algorithm the 
signal-to-noise ratio (SNR) at the output of the 
digital receiver (SNR0) and the normailized 

spectrum width (vn ) need to be estimated. For 

the dual-polarization algorithm, it is also necessary 
to estimate the differential reflectivity (ZDR) and the 
correlation coefficient (ρHV).  Fortunately, the 
digital matched filter that maximizes the SNR is 
given by the eigenvector corresponding to the 
largest eigenvalue of the normalized range 

correlation matrix C
HV  (Chiuppesi et al. 1980). 

Since this eigenvector is a column of U, the first 

element of each covariance set; i.e., 0( )ˆ ( )
HX

R k , 

0( )ˆ ( )
VX

R k , and  0 0( )ˆ
HVX

R , are the unscaled, matched-

filtered covariances corresponding to the largest 

eigenvalue 0
 . To properly scale the covariances, 

they each need to be divided by the largest 

eigenvalue 0
 ; this is described in more detail in 

Curtis and Torres (2011). 
We now have the partially-transformed 

covariances and matched-filtered values of SNR0, 
σvn, ZDR, and ρHV. The matched-filtered estimates 
need to be thresholded before the next step to 
ensure the algorithm works correctly. The σvn 
value is thresholded to be above 0.01 and SNR0 to 

be above 10 dB. The correlation coefficient, ρHV, 
is thresholded to be between 0.01 and 0.999. The 
ZDR values do not need to be thresholded. Next, 

the 1-by-L, variable-specific weight vectors,  d , 

need to be calculated and applied to the partially-
transformed autocovariances as shown: 
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The variable-specific weight vectors are computed 
for each of the meteorological variables. In this 
case, θ can be signal power (S), mean Doppler 

velocity (v), spectrum width (v ), differential 

reflectivity (ZDR), differential phase (ΦDP), or 
correlation coefficient (ρHV). The variable-specific 
weight vectors combine the variable-specific part 
of the transformation and the incoherent averaging 
of the L values of each covariance. The elements 

of the weight vectors are computed as l ld g  

where  
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The A, B, and C values are variable-specific 
values and come from an equation in Torres et al. 
(2004) that minimizes the variance of each 
meteorological variable estimator. The g term is a 
power-preserving factor that ensures that the 
reflectivity estimates are unbiased and can be 

computed from the  

l
 and the eigenvalues using 

the following expression: 
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The values of A, B, and C for the spectral moment 
estimators can be found in Curtis and Torres 
(2011). The values for the dual polarization 
estimators are given in the following table: 
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These variable-specific values depend on the four 
matched-filtered estimates that were computed 
earlier: SNR0, σvn, ZDR, and ρHV. 

Finally, the variable-specific, averaged 
covariances can be used to compute the six 
meteorological-variable estimates. An additional 
issue that needs to be addressed is the noise 
value at each range gate. Because the 
transformations are unique for each variable and 
at each range gate, the noise value is also unique 
for each variable and each range gate. The 



change in the noise power is called the noise 
enhancement factor (NEF) and depends only on 
the weight vector: 
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For the meteorological variables that depend on 
an estimate of the noise power, we can compute 
the appropriate noise values using the original 

noise values and the NEF:   , ,( ) NEF( )H V H VN N . 

For both the single-polarization and dual-
polarization algorithms, the matched-filtered SNR 
is used to censor all of the meteorological variable 
estimates that do not meet an SNR criterion. 

This algorithm extends the efficient adaptive-
pseudowhitening implementation for single-
polarimetric radars from Curtis and Torres (2011) 
to dual-polarimetric radars. It keeps the partial-
transformation step that simplifies the ground 
clutter filtering process and adds the computation 
of two matched-filtered dual polarization variables, 
ZDR and ρHV, that are needed to calculate the 
variable-specific A, B, and C values for the dual 
polarization variables. The next section will apply 
this algorithm to simulated data to evaluate its 
performance. 
 
 
3. SIMULATIONS 

The simulation parameters are based on the 
scan used to collect the real weather data that are 
described in section 4. This scan, VCP 11, is used 
during convective weather events and includes 
two 360° rotations at an elevation angle of 0.5° 
using two different pulse repetition times (PRTs). 
The current dual-polarization processing on the 
WSR-88D radars computes the dual-polarization 
variables from the long PRT, which is ~3.1 ms for 
this scan. There are 17 samples collected at each 
resolution volume for a dwell time of nearly 53 ms. 
The frequency is set to 2.7 GHz to correspond to 
the frequency used on the KOUN radar. To match 
the real data, the oversampling factor L is 5, which 
gives an oversampled range-gate spacing of ~50 
m while the length of the pulse corresponds to a 
range of ~250 m. The data are simulated as 
described in Zrnić (1975) with a range gate 
spacing of 50 m and are then convolved with a 
modified pulse measured from the KOUN data. 
This imposes range correlation on the simulated 
data that closely matches the real data. 

Data were simulated with the parameters 
that were used to define the requirements for the 
dual-polarimetric variables. These parameters are 

a spectrum width 1   2 m sv
, differential 

reflectivity DR  0.5 dBZ , and correlation 

coefficient    0.99HV  which could also be 

associated with light rain. This is a case where the 
estimators should have relatively low variances 
and the dual-polarization estimators should 
perform well. Fig. 1 shows the results of the 
simulations for differential reflectivity and 
correlation coefficient while varying the SNR (from 
the digital matched filter) from 0 to 35 dB. The 
SNR for adaptive pseudowhitening is not used 
because it varies from range gate to range gate 
and from variable to variable because of the 
variable-specific NEF described in section 2. The 
top plot is the differential reflectivity (ZDR), and the 
bottom is correlation coefficient (ρHV). 

 
Fig. 1. Standard deviations of polarimetric variable estimators 
for adaptive pseudowhitening transformation based (APTB), 
optimal pseudowhitening transformation based (OPTB), 
matched filtered based (MFB), and whitening transformation 
based (WTB) processing. The top plot is differential reflectivity 
(ZDR) and the bottom is correlation coefficient (ρHV). 

 



The results are shown for four different 
types of processing. APTB is adaptive 
pseudowhitening transformation based 
processing, MFB is digital matched-filter based 
processing, WTB is whitening transformation 
based processing using only a pure whitening 
transformation, and OPTB is optimal 
pseudowhitening based processing which uses 
the true values of the matched-filtered parameters 
to compute the variable-specific transformations 
rather than estimates. OPTB processing 
eliminates the errors from estimating the matched-
filtered variables but does not address the 
approximations used in computing the A, B, and C 
values from section 2. In all cases, APTB 
processing outperforms MFB processing and 
matches WTB processing at high SNRs. The 
APTB results are very close to the OPTB results, 
which show that using estimates to determine the 
transformations works well in practice. There are a 
couple of cases where APTB processing seems to 
outperform OPTB processing, but APTB 
processing introduces some small biases which 
result in lower standard deviations. The APTB 
biases are smaller than the biases for the MFB 
processing and are still an improvement. 

At an SNR of 20 dB, the requirement for 
ZDR is a standard deviation of less than 0.3 dB.  
The result for MFB processing is ~0.41 dB which 
does not meet the requirement, but the result for 
APTB processing is ~0.27 dB which does meet the 
requirement. The requirement for ρHV at 20-dB 
SNR is a standard deviation of 0.006. The 
standard deviation of MFB processing is ~0.008 
and of APTB processing is slightly below 0.006. At 
high SNR, adaptive pseudowhitening approaches 
whitening with a standard deviation improvement 

factor given, as expected, by 2 24 .L . 

Qualitative differences on real data will be shown 
in section 4. 

 
 
4. APPPLICATION TO REAL DATA FROM 

KOUN 

In this section, we use data collected by the 
National Severe Storm Laboratory’s KOUN radar 
to demonstrate how range oversampling can be 
employed to achieve improved dual-polarimetric 
data quality without increasing observation times. 
Time-series data are processed to illustrate and 
compare the performance improvement that could 
be realized using an operational implementation of 
the adaptive pseudowhitening technique described 
in section 2. 

On 12 Aug 2004, the polarimetric, S-band, 
KOUN radar sampled a severe storm event 
southwest of Norman, OK. Fig. 2 shows (zoomed 
in) plan-position-indicator (PPI) displays of 
differential reflectivity (top row) and correlation 
coefficient (bottom row) at ~23:37 UTC. Data 
shown in this figure correspond to the lowest 
elevation scan at an elevation of 0.5°. At this 
elevation, 17 samples were collected at each 
range resolution volume using a long PRT of ~3.1 
ms, which matches the operational parameters of 
VCP 11 on the NEXRAD network. The left and 
right panels in Fig. 2 correspond to fields obtained 
with digital matched-filter (MFB) and adaptive 
pseudowhitening (APTB) processing, respectively. 
Both sets of fields were obtained using the same 
time-series data and the same ancillary 
processing functions such as ground clutter 
filtering and data censoring. It is important to note 
that both processing modes were based on range-
correlation measurements from the data using the 
technique described by Curtis and Torres (2013). 

 

 

Fig. 2. Plan-position-indicator (PPI) displays of differential 
reflectivity (top row) and correlation coefficient (bottom row) 
acquired with the polarimetric, S-band, KOUN radar on 12 Aug 
2004 at ~23:37 UTC. The left and right panels correspond to 
fields obtained with digital matched-filter (MFB) and adaptive 
pseudowhitening (APTB) processing, respectively. 

 
Corresponding left and right panels of Fig. 2 

are useful to qualitatively assess the performance 
of adaptive pseudowhitening compared to the 
standard digital matched-filter processing. The 
significantly smoother texture of fields on the same 



sampling grid (range and azimuthal spacing) is an 
indication that, as expected, the variance of APTB 
estimates is smaller than their MFB counterparts 
when using the same dwell times. As a result of 
the variance reduction, data processed using 
adaptive pseudowhitening exhibit fewer range 
gates with correlation coefficient values above 
one. 

 
5. CONCLUSIONS 

This paper introduces an extension of the 
single-polarization adaptive-pseudowhitening 
algorithm for dual-polarimetric radars. The 
purpose is to improve the quality of the 
polarimetric variables while keeping the same 
dwell times. This is relevant for both conventional 
parabolic dish antennas and phased array 
antennas. At high SNR, the standard deviation of 
the dual-polarization estimators is decreased by 
approximately a factor of L

1/2
 (L is the range 

oversampling factor) without changing the 
scanning strategies used for single-polarization 
spectral moments.  

The dual-polarimetric version of adaptive 
pseudowhitening utilizes an efficient 
implementation similar to the one used for the 
single-polarization version. This leads to a 
significant reduction in computational complexity 
compared to a brute-force implementation of 
adaptive pseudowhitening. Although adaptive 
pseudowhitening processing does increase the 
computational load compared to matched-filtered 
processing, the benefits can be substantial as 
shown through both simulations and real weather 
data. In short, adaptive pseudowhitening is a 
practical technique for improving data quality 
without increasing scan times for dual-polarimetric 
weather radars. 
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