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1.  INTRODUCTION 

 When a radar pulse encounters obstacles in its 
path, the accuracy of radar reflectivity data is adversely 
affected, which in turn decreases the quality of 
forecasting and nowcasting tools such as rainfall totals 
and cell-tracking algorithms. The correction of these 
contaminated radar data presents a two-part problem to 
operational meteorologists and researchers seeking to 
apply these data quantitatively.  
 First, contaminated pixels must be identified as 
such: in the case of ground clutter (i.e., echoes 
produced by fixed objects close to the transmitter), this 
process involves identifying persistent clear-air echoes 
in the reflectivity imagery (Joss 1981) and using the fact 
that the power spectrum for ground clutter is localized 
around zero velocity to confirm identification using 
Doppler signal processing (Evans and Drury 1983). The 
second part of the problem consists of filling in these 
gaps caused by contaminated data, and it is this issue 
that will be addressed in this study.  

 
Figure 1: Depiction of the known stationary ground 
clutter at the McGill radar for the 1.5 km constant 
altitude plan position indicator (CAPPI) height. 
Locations of pixels contaminated by ground clutter  
are indicated in green, and each pixel represents a 1 
km × 1 km horizontal square. The domain is 240 km 
× 240 km.  

 
       In order to evaluate the performance of the gap-
filling algorithms to be developed in future sections, a 
number of test cases were studied at the S-band J.S. 
Marshall Radar Observatory in Sainte-Anne-de-
Bellevue, some thirty km west of downtown Montreal, 
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Quebec, Canada. Using the detection methods 
described above, a complete mask of ground clutter 
surrounding the McGill radar was obtained (Fig. 1). 
       The ultimate goal is to formulate an algorithm that 
will, with each new radar scan, automatically, quickly, 
and accurately replace each clutter-contaminated pixel 
with a value that more closely reflects the true 
meteorological situation. However, in order to evaluate 
the performance of each algorithm, it must be possible 
to compare the algorithms' output with some "true" 
reflectivity values. To this end, a realistic-looking region 
of "false" ground clutter will be created, where data has 
been blotted out in order to provide a testing ground for 
the gap-filling algorithms (Fig. 2). 

 
Figure 2: Example of the false ground clutter placed 
at the McGill radar for the 2.5 km CAPPI height, for 
use in testing the performance of gap-filling 
algorithms. The pixels in dark red represent areas 
that have been contaminated by ground clutter. 
(Note that the true ground clutter, in dark blue, is 
still present in the lower-right corner of the display, 
i.e., centered over the radar itself.) 

        
       The following section begins with the development 
of a gap-filling algorithm by addressing the simplest 
version of the problem at hand: given a single pixel 
contaminated by ground clutter, which pixel from its 
surroundings would make the best replacement (i.e., 
which pixel would produce the lowest error)? The 
algorithms in Section 3 expand this simplistic approach: 
rather than replacing a contaminated pixel with a single 
pixel from its surroundings, they use a combination of 
surrounding pixels, including pixels from radar scans at 
different heights and/or different times. Finally, Section 4 
summarizes the results of the evaluation of these 
algorithms. 



2.  REPLACEMENT USING A SINGLE PIXEL 

       To begin, we consider a simplified version of the 
gap-filling problem: we have a single contaminated pixel 
that we seek to replace with a different single pixel from 
its surroundings, and we want to know what typical error 
we could expect to result from that replacement. A 
figure that depicts this "typical error" (in this case, the 
mean variance) is known as a variogram, and can be 
calculated by carrying out this replacement for every 
possible pixel in a given precipitation event, and then 
averaging over the number of replacements made. An 
example of a variogram, calculated using reflectivity 
data from the same convective event that provided the 
snapshot in Fig. 2, but excluding pixels declared as 
"contaminated" is shown in Fig. 3. 
       A variogram essentially provides a simple summary 
of the error structure of any given rainfall event. For 
example, in the event summarized by the variogram in 
Fig. 3, the fact that the variogram is stretched along the 
SW-NE axis indicates that, if given the choice between 
filling a gap using a pixel to the NE vs. a pixel to the 
NW, the reflectivity of the pixel to the NE will generally 
be closer to the true value of the contaminated pixel. 
This bias simply reflects this precipitation event's strong 
organization along the SW-NE diagonal: it makes more 
sense to replace a contaminated pixel with another pixel 
from the axis parallel to the squall line than with a pixel 
from the axis perpendicular to that squall line. 
 A simple gap-filling algorithm suggests itself 
immediately, based on these variograms: the "best 
pixel" approach will search through a list of available 
(i.e., non-cluttered) pixels and select the single pixel 
with the lowest variance to use as a replacement. Figure 
4 demonstrates the value of using this best pixel 
approach with the same false ground clutter as that 
depicted in Fig. 2: the algorithm's output (left) compares 
quite well with the true reflectivity for that particular 

radar scan (right). Even in the area denoted by the black 
ellipses, where the precipitation cells are almost entirely 
covered by the false ground clutter (Fig. 2), the 
qualitative appearance of the cells appears to have 
been captured by this best pixel approach.  
 

 
Figure 3: 2D variogram calculated for a convective 
precipitation event at a given time and height.  This 
image can be thought of as a way to estimate how 
much error would result, on average, if we were to 
replace a reference pixel with a pixel from its 
surroundings. The crosshairs are centered on the 
location of the reference pixel. In terms of distance, 
1 pixel = 1 km. Since the variance involves a sum of 
differences in reflectivities [dBZ], the units of this 
figure are dB

2
. 

 
 
 
 

 
 
 
 
 

 
 
 

  
 
 

 

Figure 4: Comparison of the output produced by the two-dimensional best pixel approach (left) 
with the true reflectivity data (right) for a radar scan overlaid with the region of false ground 

clutter depicted in Fig. 2. 



       The limitations of this two-dimensional best pixel 
algorithm are clear: for one, the pool of possible 
replacement pixels is limited to those within the same 
radar scan as the contaminated pixel to be replaced. It 
seems likely, however, that a convective event with 
strong vertical development might see some value 
added by also considering pixels from different CAPPI 
levels, and it seems reasonable to surmise that data 
from different times (either earlier or, if product 
regeneration is feasible, in the near-future) would almost 
always provide at least some valuable information over 
the course of an entire precipitation event. In operational 
settings, we frequently ignore data from different radar 
scans, despite the fact that these data could contribute 
a large amount of valuable information. 
       In addition, the best pixel algorithm is focused on 
single-pixel replacement, whereas a combination of 
surrounding pixels could well produce a more accurate 
way to fill gaps left by ground clutter. The following 
section addresses this added complexity.  
 
3. INFORMATION BLENDING  

       Rather than replacing each pixel contaminated by 
ground clutter with a single pixel from its surroundings, 
ground clutter can instead be replaced with some blend 
of data from its surroundings. One geostatistical method 
of blending information that lends itself particularly well 
to this problem is ordinary kriging (Krige 1951, 
Wackernagel 1995). A detailed overview of this method 
is outside the scope of this manuscript, but the general 
approach simply involves finding the mean of a number 
of pixels, as weighted by the error structure defined by 
the variograms (e.g., Fig. 3).  
       We are then faced with the problem of deciding how 
many pixels to combine (krige). Kriging a set of too 
many pixels will result in major computational delays 
(thus undermining the operational goals underlying this 
project), and will also tend to smooth out any extreme 
values, which is particularly undesirable given the 
importance of extreme values of reflectivity in severe 
weather forecasting. The number of pixels kriged in this 
study was chosen to be 2N, where N is the number of 
dimensions of available potential replacement pixels, 
i.e., 2D limits the search for replacement pixels to a 
single radar scan, whereas 3D includes data from 
different heights, 3.5D also includes data from past 
times, and 4D also incorporates data from near-future 
times. This number of pixels to be kriged is low enough 
to reduce the risk of oversmoothing (and is well below 
the limit of computational power in an operational 
setting), but still represents a gain in available 
information for gap-filling algorithms.  
       The simplest technique that still makes use of 
ordinary kriging would thus be quite similar to the best 
pixel approach described in the previous section. Rather 
than simply picking the single pixel with the lowest 
variance, however, this approach would select the 2N 
pixels with the lowest variance, and would then combine 
them in a weighted average via ordinary kriging. The 
resulting value would then be used to replace the value 
of the pixel contaminated by ground clutter. 

The dangers of this simple ordinary kriging method lie 
mainly in the fact that it allows for a great deal of 
redundant information: it will commonly select two 
adjacent, and hence very similar, pixels rather than 
picking just one of those pixels and then seeking out a 
different pixel that is more likely to provide independent 
information. In order to mitigate these pixel-selection 
issues, a "smart" ordinary kriging approach is developed 
to disallow the selection of adjacent or nearby pixels, all 
without increasing the number of pixels selected (and 
hence avoiding the computational cost and 
oversmoothing issues associated with ordinary kriging). 
By replacing redundant data with more independent 
information, this smart kriging process should fill the 
ground-clutter gaps with values that better reflect the 
mean pattern. 
       How should we define these "adjacent" or "nearby" 
pixels that are likely to contain redundant information, so 
as to avoid selecting them? Restricting ourselves to two 
dimensions for the sake of clarity (i.e., requiring that all 
four candidate replacement pixels are located on a 
single CAPPI scan from the same height and time), and 
picturing a set of orthogonal axes centered on the 
contaminated pixel that needs to be replaced, we can 
imagine selecting one pixel from along the positive x-
axis, one from along the negative x-axis, one from along 
the positive y-axis, and one from along the negative y-
axis. These four pixels are thus the combination that is 
least likely to sample redundant data, since they by 
definition sample four completely different quadrants of 
the radar scan.  

 
Figure 5: Illustration of the "bowtie" pixel selection 
method. The pixel with the lowest available variance 
(red point) is the first of the four pixels selected, and 
a system of axes (dashed lines) is built around it, 
based on the position of this best pixel with respect 
to the reference pixel to be replaced (origin). First, a 
30-degree arc is measured out in the direction 
opposite that of the first pixel (green lines), and the 
pixel within that arc with the lowest variance is the 
next pixel to be selected (black point within the 
green lines). A similar methodology is used to 
select the remaining two pixels within the 30-degree 
arcs (blue lines) measured with respect to the 
orthogonal axis. 

 



 
 
 
 
 
 
       In reality, however, this ambitious notion of picking 
pixels that align perfectly along each axis is unrealistic. 
We are not likely to be dealing with the replacement of a 
single contaminated pixel in isolation; large nearby 
regions of ground clutter dramatically narrow the pool of 
candidate pixels to choose from. By widening the 
candidate pixel search parameters from "must be 
located on the axis" to "must be located within 30 
degrees of the axis," we can still find four uncluttered 
replacement pixels, and simultaneously ensure that they 
are likely to provide relatively independent information. 
This strategy lays the foundation for the "bowtie" 
method of pixel selection (Fig. 5). 
 This process is generalizable to four dimensions 
(using statistical equivalents between variances in time 
and horizontal distance), and hence can take advantage 
of the massive store of valuable information provided by 
reflectivity data at different CAPPI heights and times. 
Figure 6 illustrates the qualitative value added, first by 
switching from the best pixel approach to the ordinary 
kriging approach (left; compare with Fig. 4, noting that 
the zoom level is different), and then by switching from a 
simple 2D approach to a fully 4D approach (right). When 
compared with the true intensity and size of this cell 
(Fig. 4), the 4D algorithm is a very close match. 
 
4. RESULTS AND CONCLUSIONS 

       Table 1 summarizes the results for each of the four 
gap-filling algorithms. The nearest neighbor approach 
simply replaces each contaminated pixel with its nearest 
uncontaminated neighbor, which is approximately the 
level of complexity examined in other work studying 
operational gap-filling in contaminated radar data (e.g., 
Lee et al. 1995, Bellon and Kilambi 1999, Galli 1984, 
Sánchez-Diezma et al. 2001). The best pixel approach 
is as described in Section 2, and the two ordinary 
kriging approaches are described in Section 3. Note that 
there are two vectors of improvement: more accurate 

gap-filling can be achieved either by increasing the 
complexity of the pixel-replacement algorithm (i.e., 
going from a best pixel approach to a simple ordinary 
kriging approach to a smart ordinary kriging approach), 
or by increasing the dimensionality, and hence the pool 
of possible replacement pixels.  
       All of the algorithms introduced in this work 
outperform the simple nearest-neighbor approach, but 
the greatest leap in performance occurs across the 
board when progressing from a three-dimensional 
algorithm to one that includes data from other times 
(even if only past times). In particular, the incorporation 
of data from different times improves performance most 
dramatically for the smart ordinary kriging approach that 
uses the "bowtie" pixel selection method (Fig. 5). 
       While this work has primarily been a proof-of-
concept for the operational use of the smart ordinary 
kriging algorithm in ground clutter mitigation, its 
implications extend to other areas of radar meteorology. 
First, the ordinary kriging method itself is a simple and 
versatile technique that has seen very little use in radar 
meteorology, having mainly been limited to interpolation 
between broadly spaced data points, such as rain 
gauge networks (Atkinson and Lloyd 1998). This is not 
particularly surprising, since denser datasets such as  
radar require far more computational power for ordinary 
kriging: essentially, users of radar data have too much 
information to effectively make use of this powerful 
method. Through the use of the bowtie pixel-selection 
method described in the previous section, however, this 
problem is rendered moot: by selecting a small number 
of representative pixels that can then be kriged for 
relatively little computational cost, the range of feasible 
applications for this method is broadened. 
 
 
 

Figure 6: Qualitative depiction of the value added by including pixels from different heights and 
times. Nearly the entirety of the storm cell circled was blotted out by ground clutter (Fig. 2), and 
these figures show the results of the ordinary kriging algorithm with two different pools of 

potential replacement pixels: 2D only (left) and fully 4D (right). 



Table 1: Mean standard deviations of radar 
reflectivity (dB; essentially, mean error) for each of 
the gap-filling algorithms used in the convective 
precipitation event illustrated in the preceding 
figures. 

Nearest Neighbor 

2D 5.3 

Best Pixel 

2D 5.3 

3D 5.2 

3.5D 4.9 

4D 4.9 

Ordinary Kriging 

2D 4.4 

3D 4.4 

3.5D 4.1 

4D 4.0 

Smart Ordinary 
Kriging 

2D 4.3 

3D 4.3 

3.5D 3.0 

4D 2.9 
 
       Second, the applications of these radar data gap-
filling algorithms need not be limited to ground clutter. 
While ground clutter was the focus of this study, being 
particularly easy to identify and map out ahead of time, 
there are also complex algorithms in place to identify, 
say, regions of radar attenuation in real-time (Gorgucci 
et al. 1998). There is no reason why, once attenuated 
pixels have been identified, the user's choice of ordinary 
kriging algorithm could not then be used to immediately 
fill in these newly identified gaps. Gap-filling in other 
fields, so long as those fields behave at least somewhat 
similarly to radar reflectivity (i.e., they are continuous), 
could also benefit from this approach. This smart 
ordinary kriging algorithm could also be used to, for 
instance, fill gaps in Doppler velocity imagery. 
       Finally, and perhaps most importantly, in a field that 
frequently treats individual radar scans as though they 
have just sprung into being in perfect isolation from all 
that has preceded them, this study has provided a 
proof-of-concept for the importance and value of 
considering data from different times. Data from earlier 
radar scans is a relatively untapped well of information, 
and given the substantial improvements in even these 
simple gap-filling approaches, it is well past time that 
radar products should be generated and applied with full 
knowledge and appreciation of the data that came 
before. 
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