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1 INTRODUCTION 

Cloud radars allow for the characterization of the 

vertical distribution of ice cloud microphysical 

properties through measurements of “moments” of the 

ice particle size distribution (the n
th

 moment of the 

particle size distribution N(D) is defined as 

   dDDDNM
n

n ∫= )( .   (1)  

The cloud radar measured moments are the 

radar reflectivity (proportional to M6 in Rayleigh 

approximation), and the terminal fall speed that can be 

retrieved from the Doppler radar measurement at 

vertical incidence or from a combination of non-

collinear Doppler measurements (proportional to Mb 

where b varies with particle habit. Retrieving the 

microphysical properties from cloud radar 

measurements consists of retrieving for each radar 

range bin the two free parameters of a prescribed 

N(D) (two measurements for two unknowns) with two 

measured moments of N(D), and then to calculate the 

microphysical properties as proportional to moments 

M0 for total concentration NT, M2 for visible extinction, 

M3 for IWC, or M3/M2 for effective radius.  

However additional assumptions about the 

statistical relationships between crystal mass and 

maximum crystal dimension m(Dmax) and between 

projected surface and maximum dimension A(Dmax) 

are needed in these calculations. In virtually all active 

remote sensing retrieval techniques, a single set of 

relationships is assumed for all ice clouds, with the 

exception of the RadOn technique (Delanoë et al. 

2007), where this relationship is constrained by radar 

reflectivity and fall speed for each ice cloud. Generally, 

the Brown and Francis (1995) m(Dmax) relationship for 

ice aggregates has been assumed in the past. Recent 

work has shown that this relationship provided 

accurate ice water contents (IWC) in a mean sense, 

but fails to capture dependences on temperature and 

particle size that are a result of the complex ice 

microphysical processes (Heymsfield et al. 2010, H10 

in what follows). New m(Dmax) relationships have 

therefore been proposed (H10) derived from closure 

analyses between particle size distribution and bulk 

IWC measurements in a variety of ice clouds from six 

field campaigns. However the variability of this 

relationship as a function of the large-scale conditions 

has also clearly been highlighted.  

A large part of the errors in cloud microphysical 

retrievals is directly related to this natural variability 

when assuming a single m(Dmax) relationship for all ice 

clouds, as recently highlighted for tropical cirrus clouds 

in Protat et al. (2011). Better constraints on the 

variability of the m(Dmax) relationship are therefore 

needed to reduce uncertainties in ice clouds 

microphysical retrieval techniques using active remote 

sensing as input. The objective of this paper is to 

estimate the m(Dmax) relationship using different types 

of closure analyses using collocated airborne cloud 

radar and in-situ microphysical measurements, and 

then to investigate the natural variability of this 

relationship. In section 2 we describe the observations 

used in this work. In section 3 we discuss the different 

closure analyses developed. We then analyse results 

obtained using these closure analyses in section 4. 

2 OBSERVATIONS 

In this work two main sources of observations are 

used: unique multi-beam airborne Doppler cloud radar 

observations and state-of-the-art in-situ N(D) and A(D) 

measurements. Such data have been collected in 

2010 within the trailing stratiform part of continental 

Mesoscale Convective Systems (MCSs) over West-

Africa (MT-2010). MT stands for Megha-Tropiques, a 

French-Indian satellite recently launched to investigate 

processes involved in the life cycle of MCSs, and the 

water and energy cycles in the Tropics.  

2.1 The RASTA Airborne Doppler Cloud Radar 

The RASTA (RAdar SysTem Airborne, Protat et 

al. 2009) radar is a 95.04 GHz multi-beam Doppler 

cloud radar installed on the French Falcon 20 research 

aircraft. During the MT-2010 experiment the 

integration in the aircraft included three downward-

looking antennas (nadir, 38° off-nadir in the direction 
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of propagation of the aircraft, and 20° off-nadir 

perpendicular to the direction of propagation of the 

aircraft.) and two upward-looking antennas (zenith,  

38° off-nadir in the direction of propagation of the 

aircraft). So above the aircraft only two components of 

the 3D wind field can be retrieved. The RASTA radar 

has then been upgraded in 2011 to accommodate a 

third antenna looking up. We use the pulse pair signal 

processing, with 2048 pulses. The range resolution is 

60m. The calibration of RASTA has been done using 

the ocean surface backscattering (the so-called “σ0 

method”). The sensitivity resulting from the different 

radar parameters was about -35 dBZ @ 1 km for the 

nadir antenna. 

2.2 The in-situ microphysical probes 

During MT-2010, the N(Dmax) measurements of 

the in-situ microphysical properties were performed 

using a newer generation of Optical Array Probes 

(OAP): the 2D Stereo probe (2D-S) from SPEC Inc. 

and the Precipitation Imaging Probe (PIP) from Droplet 

Measurement Technologies. In order to derive particle 

size distributions, area distributions, and aspect ratios 

from the 2D images, standard corrections of the OAP 

data have been applied, including the rejection of 2D 

images where shattering or splash was identified. 

Moreover, truncated images which are partially 

recorded have been reconstructed and the pixel 

resolution has been corrected for the true air speed. 

Composite N(Dmax) and A(Dmax) distributions spanning 

50 to 6400 microns in Dmax have then been derived 

using a simple linear interpolation scheme described 

in Fontaine et al. (2013). 

3 METHODOLOGY: CLOSURE ANALYSIS 

There are different ways to extract information 

about the m(Dmax) relationship from in-situ 

measurements. The first approach, used in H10, uses 

the in-situ N(D) and bulk IWC measurements to 

directly retrieve the a and b coefficients of the m(Dmax) 

relationship expressed as m(Dmax) = am (Dmax) 
bm

. This 

is expected to be the most accurate, since IWC is the 

integral of N(Dmax) m(Dmax) dDmax. However accurate 

bulk IWC measurements are not available during our 

field experiments. A second technique recently 

proposed in the literature (Protat et al. 2011) consists 

in using m(Dmax) relationships from the literature 

weighted using the ice particle habit classification from 

the Cloud Particle Imager (CPI). It has been shown 

that the technique allowed for accurate retrievals of 

IWC in tropical cirrus, but it has not been tested in 

other types of ice clouds. Unfortunately the CPI was 

not part of the line-up either for MT-2010. 

Two approaches using cloud radar and in-situ 

measurements are explored in this paper. The first 

approach (called METHOD1 below) is described in 

detail in Fontaine et al. (2013). The exponent bm of 

the m(Dmax) relationship is first constrained by the 

exponent of the A(D) relationship, then the prefactor 

am of the m(Dmax) relationship is constrained by the 

airborne cloud radar reflectivity interpolated at the 

flight altitude from the nadir and zenith radar beams. 

The tight relationship between the two exponents has 

been demonstrated using simulations of different 

particle habits (Fig. 1). The second approach (called 

METHOD2 below) has been discussed in the 

framework of the RadOn cloud radar retrieval 

technique (Delanoë et al. 2007). It consists in using 

radar reflectivity and terminal fall velocity retrieved 

from the airborne cloud radar data as references. The 

measured in-situ N(Dmax) and A(Dmax) are then used 

to generate a set of possible in-situ radar reflectivity 

(using T-matrix calculations with an aspect ratio of 0.6) 

and terminal fall velocity (using the Heymsfield and 

Westbrook 2010 parameterization). In order to 

generate this set of possible solutions we defined 

minimum and maximum values for the am and bm 

coefficients from the values published in H10 (Fig. 2). 

The retrieved optimal (am, bm) is the combination that 

provides smallest differences with radar reflectivity and 

fall speed in the least squares sense. 
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Figure 1: Relationship between the exponent of A(Dmax) and 

bm for several simulations of ice crystal habits. 

 

Figure 2: Relationship between am and bm and temperature 

dependence as derived from METHOD1 (see text). (a,b) 

boundaries for calculations of in-situ reflectivity and terminal 

fall speed in METHOD2 are also shown (blue lines). 
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4 RESULTS 

4.1 Mass-size relationships with METHOD1 

As discussed previously METHOD1 relies on a 

relationship between the exponent of the m(Dmax) 

relationship and the exponent of the A(Dmax) 

relationship. Each N(Dmax) and the corresponding 

A(Dmax) relationship has been derived from all in-situ 

microphysical observations from MT-2010 after 

averaging at 5 seconds resolution (which typically 

corresponds to a 1-km horizontal resolution at typical 

200 ms
-1

 Falcon 20 aircraft speed). The RASTA radar 

reflectivities have also been averaged at 5 seconds 

resolution to match the in-situ measurements. 

Figure 3 shows a summary of the variability of 

the am and bm coefficients of the m(Dmax) relationship 

obtained from the MT-2010 flights.  

 

 

 

Figure 3: The probability distribution of a and b coefficients of 

the m(Dmax) relationship as a function of temperature. The 

values of a and b from the H10 study are the black lines. 

As can be seen from this figure the variability of 

the bm coefficient (lower panel) is smaller than that of 

the am coefficient. The standard deviation of the 

probability distribution of bm is quite small with 90% or 

more of points ranging between 1.6 and 2.4. The 

highest frequency values of the distribution are found 

for bm = 2.1 (60-70% at all heights) and does not vary 

with temperature. This small variaibility could be partly 

due to the fact that in METHOD1 the bm coefficient is 

linked through a parameterization with the exponent of 

the A(Dmax) relationship, which might remove some of 

the natural variability. Such assumption is not made in 

METHOD2, so we will get back to this point below. 

In contrast there is a clear tendency in Fig. 3 for 

the am coefficient to decrease with decreasing 

temperature (or increasing height in the troposphere). 

This temperature dependency is also shown in Fig.2, 

where the relationship between am and bm is given. 

This important result means that an ice particle of 

maximum diameter Dmax will carry much less ice mass 

if located at greater heights in the troposphere. This is 

intuitively consistent with the fact that irregularly-

shaped crystals are predominantly found at higher 

altitudes while more spherical ice aggregates are 

found at lower heights due to the aggregation process. 

The distribution of the am coefficient is also much 

wider than that of the bm coefficient with highest 

frequency values peaking at about 12-15% at all 

temperatures. This relatively large variability implies 

that the use of a single value of am for all clouds in ice 

cloud microphysical retrieval techniques is probably a 

major source of uncertainty. This will be quantified 

further in a follow-up study by running some sensitivity 

tests in a variational retrieval framework. 

These results are very similar to those derived 

from the statistical study of H10 who used a very large 

number of field experiments and a variety of large-

scale environments to propose: 

m(Dmax) = 5.28 x 10
-3

 Dmax 
2.1

   (2) 

In their study, H10 also indicate that the variability 

of the am coefficient is a function of the large-scale 

regime the clouds are embedded in (convectively-

generated versus synoptically-generated clouds). 

However they did not study the temperature 

dependence of the am coefficient. The value found in 

H10 in the immediate vicinity of deep convection 

(am=0.0110) is consistent with the values retrieved at 

temperatures from 273K down to about 260K in our 

West-African stratiform precipitation. Values similar to 

the composite value of H10 (am=0.00528) are found  

in our case higher up, or for temperature lower than 

260K. If there is no way to further constrain the am 

coefficient in ice cloud microphysical retrieval 

techniques using active remote sensing observations, 

this vertical variability of the a coefficient could at least 

be introduced, and the width of the distribution could 

also be introduced in variational techniques within the 

error covariance matrix. 

bm 

am 



4.2 Mass-size relationships with METHOD2 

As discussed previously METHOD2 uses two 

radar parameters instead of only the radar reflectivity 

in METHOD1. The terminal fall speed is retrieved from 

the system of three downward-pointing antennas and 

two upward-looking antennas of the RASTA radar, 

using a modified version of the Protat and Zawadzki 

(1999) variational 3D wind retrieval technique. For 

each 5 km horizontal x 120 m vertical grid sampled 

below the aircraft by the cloud radar three non-colinear 

Doppler measurements (or two above the aircraft) are 

matched spatially to retrieve the two horizontal wind 

components (only one above the aircraft) and the sum 

(VT+w), where VT is the terminal fall speed and w the 

vertical wind component. Usually these two 

components are then separated in a second step 

using the so-called DOP-Z-H technique described and 

validated in Protat and Williams (2011). The third step 

of the 3D wind retrieval then consists in adding the air 

mass continuity equation as an additional constraint 

and using the three wind components and VT retrieved 

at steps 1 and 2 as the first guess. This last step 

ensures that all the constraints are well satisfied by the 

3D wind and VT. An illustration of this process is given 

in Fig. 4 for a straight-flight pattern from MT-2010 

within a trailing stratiform region. 

However, in order to utilize the closure analysis 

of METHOD2, only the values near flight altitude are 

required. Therefore in that case, step 2 described 

above is modified. The flight altitude (VT+w) is 

obtained by interpolating linearly the values retrieved 

at step 1 above and below the aircraft (second panel 

from top in Fig. 4), and then w measured in-situ by the 

inertial navigation system is subtracted to that 

interpolated (VT+w) to retrieve VT. This procedure 

allows for more accurate retrievals of VT, as additional 

errors introduced when using step 2 described above 

are avoided.  

METHOD2 has been applied to only one flight of 

the MT-2010 experiment, and the results are shown 

for one straight flight segment in Fig. 5. The first 

interesting things to note on Fig. 5 are that the 

different simulations of Z and VT using different sets of 

am and bm coefficients span a large range of possible 

values of Z and VT. It is also clearly seen that radar 

reflectivity provides a strong constraint for am, not so 

strong for bm (i.e., there is a nice separation between 

sets of curves which correspond to different values of 

am, bm being shown with a color code). That result 

somewhat validates the METHOD1 principle, in which 

Z is used to retrieve am, while b is constrained by the 

exponent of the A(Dmax) relationship. For sake of 

comparisons, three different retrievals of am and bm 

are compared: using Z only as a constraint (blue line), 

using VT only as a constraint (green line), and 

METHOD2 where both Z and VT are used as 

constraints. 

 

Figure 4: Illustration of the 3D wind retrieval technique. From 

top to bottom: radar reflectivity; (VT+w) reconstructed from 

the Doppler measurements; horizontal wind component 

towards the radar nose and towards the left wing; and the 

vertical wind component. 

Although the three retrievals generally agree for 

that flight segment (it is not always the case), it is 

clearly observed in Fig. 5 that METHOD2 is best (as 

expected by construction) at fitting both Z and VT time 

series observed by the RASTA radar. The retrieved 

am and bm values using METHOD2 scatter around 

the Brown and Francis (1995) am and bm parameters 

(dotted lines on the two bottom panels of Fig. 5), with 

a relatively large variability. For that single flight 

segment, the values of am and bm basically span the 

whole domain of variability set from Fig. 2. This result 

demonstrates that it is crucial to find ways to better 

constrain the m(Dmax) relationship in active remote 

sensing retrievals and not use a single assumption for 

all clouds, and even within the same cloud. This is 

confirmed by the density distribution of am and bm 

values for a whole flight (Fig. 6). Further analysis and 

comparisons is required, but it seems that METHOD1 

(Fig. 2) and METHOD2 (Fig. 6) seems to provide 

similar results regarding the span of possible am and 

bm coefficients in West-African stratiform precipitation. 



5 CONCLUSION 

The combination of airborne cloud radar data and 

in-situ particle size and bulk microphysics 

measurements is an unique way to learn more about 

the statistical relationship between mass, projected 

area, and maximum dimension of ice crystals. Our 

next step is to gather more data in a variety of large-

scale environments in order to better understand the 

variability of these relationships and derive a more 

robust characterization of these relationships in order 

to estimate uncertainties in current active remote 

sensing retrievals of cloud microphysical properties 

and improve these techniques. The immediate next 

steps of this work will be to compare statistically the 

two approaches developed and check whether they 

can provide a consistent picture. 

 
 

Figure 5: From top to bottom, times series of: radar 

reflectivity, terminal fall velocity, am, and bm. The array of 

curves shows the span of possible solutions when using the 

range of am and bm defined in Fig. 2. The black line is the 

RASTA radar measurement. The blue, green, and red lines 

are when Z, VT, or Z and VT are used as constraints to 

retrieve am and bm. The BF95 am and bm are shown as 

dotted lines in the two bottom panels. 

 

 

 

 
Figure 6: Density distribution of bm as a function of am for a 

whole stratiform precipitation flight of MT-2010. 
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