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1. INTRODUCTION 
 
A number of operational centres are now 
routinely running convection permitting 
atmospheric models for regional Numerical 
Weather Prediction. The Met Office is currently 
running a variable resolution version of the 
Unified Model (UM; Davies et al. 2005), the 
UKV, with outer resolution 4km and inner 
resolution of 1.5km over the United Kingdom. 
The high horizontal resolution of the 
atmospheric model, and associated high 
resolution representation of orography, and 
improved physical parameterizations, allows 
the model to produce mesoscale and 
convective features with a high degree of 
realism. The major challenge for the 
nowcasting application, i.e. forecasting in the 
range 0 – 6 hours, is to support the improved 
realism with improved accuracy by the 
optimum application of data assimilation. 
 
The UKV modelling system runs 8 times per 
day, with 3-hourly cycling 3D-VAR. 
Observations assimilated in 3D-VAR include 3 
hourly cloud cover, hourly SYNOP reports: 
screen temperature, relative humidity, wind, 
pressure and visibility, any available 
radiosonde ascents, hourly AMDAR, wind 
profiler, GPS time delay, scatterometer winds, 
AMVs, and hourly SEVIRI infra-red. In 
addition, hourly radar-derived surface rain 
rates are assimilated by latent heat nudging, 
where model profiles of latent heat release are 
scaled by the difference between modelled 
and observed precipitation. 
 
Latent heat nudging has been shown to have 
a beneficial impact on precipitation forecast 
skill, particularly during the first three hours 
where its impact exceeded that of 3DVAR  
(Dixon et al. 2009). 
 
Precipitation forecasts derived from the 
operational UKV are beaten by advection 
based methods in the first three hours. 
Therefore the current operational Met Office 
nowcasting system of post-processed data 
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(UKPP/STEPS, Bowler et al 2006) uses 
information blended from an advection based 
scheme and the UKV model.  
 

 
Figure 1. Model domain of Southern UK 
nowcasting demonstration project (NDP), 
nested within the UKV model. 
 
With continued increases in the availability of 
computer resources and observations, 
including new data types and more frequent 
observations, the Met Office developed an 
NWP based nowcasting system, as part of the 
Nowcasting Demonstration Project (NDP) 
which ran as a demonstration over Summer 
2012. The system provided 7 hour forecasts 
hourly, for a Southern UK domain, nested 
within the UKV, shown in figure 1. The 
forecast model part of the NDP system was 
essentially the same as the UKV model, 
except on a smaller domain, but with fixed 1.5 
km horizontal grid spacing and the same 
parameterizations. However, there were a 
number of differences in the data assimilation 
system.  The NDP system used hourly cycling 
4D-VAR data assimilation for all observations 
except radar derived rainrates, which were 
assimilated via latent heat nudging. The use of 
4D-VAR allows the optimum use of high 
temporal (5-15 minutes) resolution 
observations, although at considerably 
increased cost relative to 3D-VAR due to the 
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requirement to iterate a linearized version of 
the forecast model. 
 
Observations assimilated in 4D-VAR included 
Doppler radial winds from 5 radars, every 10 
minutes; winds from 4 wind profilers every 
15 minutes; MSG SEVIRI satellite radiances, 
channels 5, 6 and window channels (sea only) 
every 15 minutes; hourly 3D moisture from 
satellite and surface cloud observations; 
hourly MSG cloud- and humidity-tracked 
winds; hourly aircraft temperature and wind; 
and hourly surface temperature, relative 
humidity, wind and pressure. 
 
Alongside the development of the NDP 
system, the Met Office is investigating the use 
of novel observations in convective-scale data 
assimilation.  
 
Radar observations which are being actively 
researched include Doppler winds, refractivity, 
and reflectivity. The assimilation of radar 
Doppler winds has recently been introduced 
for the UKV operationally, giving a 1-hour 
improvement in forecast skill at low rain rates.  
This paper discusses research into the 
assimilation of radar reflectivity at the Met 
Office. The UK Weather Radar Network is 
shown in figure 2. Whilst latent heat nudging of 
radar-derived surface rain rates is beneficial 
for precipitation forecasts, there are 
advantages to using radar reflectivity data 
directly within the variational assimilation 
system. Variational assimilation does not 
require the assumption of latent heat nudging 
that latent heat release occurs in same column 
as precipitation. The use of all observations 
together in a common framework should 
alleviate sub-optimal interactions and allow the 
consistent use of complementary information. 
A further advantage of 4D-VAR is that it 
evolves the background error covariances. 
 
2. APPROACHES TO RADAR 
REFLECTIVITY ASSIMILATION 
 
Sun (2005) provides an excellent review of the 
approaches taken to the assimilation of radar 
data in convective-scale models.  Convective-
scale data assimilation has a number of 
different challenges to large-scale assimilation.  
The specific aim of convective-scale data 
assimilation is to improve quantitative 
precipitation forecasting (QPF), thus the 
accuracy of the location and intensity of 
precipitation is the key metric of performance 
for convective-scale forecasts.  Balance 
approximations used in large-scale data 
assimilation generally do not apply at the 

convective scale, and whilst a linear 
approximation to dynamics at the synoptic 
scale may be close to a non-linear model 
trajectory on the order of 6 hours, convective-
scale features have time scales on the order of 
minutes. 
 
Modern approaches to the assimilation of 
radar data at the convective scale include 
variational and ensemble techniques, which 
are both able to assimilate indirect 
observations and produce a best-fit for the 
entire model domain using all available 
observations. 
 
Caumont et al. (2009) have a developed a 
1D+3D-Var system for the assimilation of 
radar data in the Meteo-France convective-
scale Arome model. They use a Bayesian 
approach following Kummerow et al. (2001) to 
derive pseudo-humidity profiles which are then 
assimilated in 3D-Var with all other 
observations, and this system has improved 
precipitation forecasts.  Similarly, Ikuta and 
Honda (2011) have developed a 1D+4D-Var 
assimilation system for the Japan 
Meteorological Agency (JMA) meso-scale 
model (MSM).  The particular advantage of 
this approach is avoiding the difficulty of 
handling the non-linear relationships between 
radar reflectivity, rainwater mixing ratio and 
humidity, and the non-Gaussian probability 
distribution of these variables and their 
covariances, in a 3D or 4D-Var assimilation. 
 
Jenny Sun has pioneered the assimilation of 
radar data in 4D-Var. Sun and Crook (1997, 
1998) developed a 4D-Var Doppler Radar 
Analysis System (VDRAS), with which they 
demonstrated the ability to initialise a 
convective-scale model with a warm-rain 
parameterisation using only single Doppler-
radar observations in a short time window.  
Studies using the VDRAS system have used 
summer cases, where the warm-rain process 
dominates and ice can be neglected.  To avoid 
problems with the minimization caused by 
non-linearities, they made a number of 
changes to the microphysics scheme – 
keeping both the evaporation rate and the 
rainwater fall velocity constant for rainwater 
mixing ratios below a critical value, to avoid 
large gradients in the adjoint calculation.  
Unlike the Met Office 4D-Var system, VDRAS 
is not incremental, but instead iterates a non-
linear forward model and uses the adjoint of its 
tangent-linear to calculate the gradient terms 
of the cost function. 
 



Wang et al. (2011) developed the Weather 
Research and Forecast model (WRF) 4D-Var 
system to assimilate radar-reflectivity 
observations. The developments made include 
adding cloud water and rainwater as control 
variables, which required modelling their error 
covariances, developing a linear 
approximation of a Kessler warm-rain scheme 
and its adjoint, and developing an observation 
operator for radar reflectivity.  Following Sun 
and Crook (1997), they calculate the rainwater 
mixing ratio, qr, from reflectivity and assimilate 
qr rather than reflectivity, noting that the 
relationship between qr and reflectivity is 
highly non-linear.  In their study, they used 5-
minute radar data and a 30 minute time-
window, having found problems with spin-up in 
their initial experiments with shorter time 
windows.  Note, however, that this time 
window is significantly shorter than the 1-hour 
window used in the Met Office NDP system.  
To overcome the ‘zero rain’ problem, where 
precipitation in the model and the observations 
are not collocated, they found the use of 
multiple outerloops to be critical.  The quality 
control procedure used in their study follows 
that of Xiao et al. (2005, 2007), using the 
NCAR “SOLO” software (Oye et al. 1995) to 
perform manual data quality control. 
 
Following this work, Wang et al. (2013) 
developed an improved a scheme where the 
derived rain water mixing ratio is assimilated 
instead of reflectivity, and additionally 
observations of humidity saturation are 
assimilated where radar reflectivity exceeds a 
threshold above cloud base. 
 
Sun and Wang (2013) reviews the 
developments and plans Advanced Research 
Weather Forecast and Forecasting (WRF-
ARW) system for varational assimilation of 
radar observations at the convective-scale.  
They have found encouraging initial results 
from an incremental 4D-VAR system, but 
further investigations are planned, particularly 
in a continuous cycling context, and to take 
advantage of dual-polarization observations. 
 
Kawabata et al. (2011) modified a convective-
scale nonhydrostatic model 4DVar system 
(NHM-4DVAR) to directly assimilate radar 
reflectivity.  Their system uses the full non-
linear NHM model as the forward model, which 
includes three-ice bulk cloud physics, and an 
adjoint model which includes the warm rain 
process.  The moist control variables are total 
water excluding rainwater (qv + qc), and the 
relative mixing ratio of rainwater (qr/qvs), where 
qvs is the background saturation mixing ratio of 

water vapour.  These variables were chosen to 
give a background error probability distribution 
that was relatively close to Gaussian and such 
that the error correlations between the control 
variables were not large.  They use a Z-qr 
relation as the observation operator. To avoid 
the ambiguity of low reflectivity signals, they 
treat reflectivity < 10 dBZ specially, 
assimilating 0 dBZ only where the background 
exceeds 10 dBZ, to avoid drying the 
background in the case where precipitation is 
not detected by the radar.  Following impact 
tests to determine the observation error 
including the representativeness error and 
errors in the observation operator, they set the 
observation error to 10 dBZ.  They used an 
assimilation window of 30 minutes, 
assimilating radar reflectivity and radial-wind 
data at 1-minute intervals, GPS-Precipitable 
Water Vapour (PWV) at 5-minute intervals, 
and surface and wind profiler data at 10-
minute intervals.  To allow the 2-km resolution 
NHM-4DVAR system to spin-up from the initial 
and boundary conditions provided by a larger 
domain 2-km model embedded within a 5-km 
NHM model, they performed 8 1-hour 
analysis-forecast cycles before starting the 
assimilation experiment.  The spin-up cycles 
were initiated in a period of calm weather.   
 
Through the assimilation of radar reflectivity 
and radial winds Kawabata et al. (2011) were 
able to produce an improved forecast over the 
Tokyo area.  An experiment to increase the 
assimilation window to 1 hour, hoping to 
extend the influence of radar assimilation, did 
not reproduce the intensity of the main 
convective feature in their case study, and 
produced a worse forecast than the 
experiment using a 30-minute assimilation 
window.  They also performed experiments 
with an incremental system, using a tangent-
linear approximation to the full non-linear 
model in the forward integration instead of the 
full model.  In these experiments, the 
assimilation converged slowly and the model 
runs failed to produce the strong convective 
feature, which they attribute to the inability of 
the incremental system to represent the strong 
non-linearity of such a convective feature. 
 
The potential of the ensemble Kalman Filter 
(EnKF) for convective-scale data assimilation 
has been demonstrated (Snyder and Zhang, 
2004, Zhang et al. 2004, Caya et al. 2005), but 
convective-scale data assimilation with 3D-Var 
and 4D-Var systems is currently more mature, 
and given the investment the Met Office has 
made in its operational 3D and 4D-Var data-
assimilation system, current Met Office 



research focuses on variational approaches, 
however, the Met Office is simultaneously 
developing a strategy for ensemble data 
assimilation at the convective-scale, and future 
studies will compare the assimilation of radar 
reflectivity data within variational and 
ensemble systems. 
 
The Met Office has developed two methods for 
the variational assimilation of radar-reflectivity 
data: the indirect approach, where radar 
reflectivity and model background data are 
used in 1D-Var to produce relative humidity 
and temperature profiles, which could be 
assimilated in 3D-Var or 4D-Var, and the direct 
approach, where a forward model is used to 
assimilate reflectivity observations within 4D-
Var.  Research is ongoing to determine 
whether either variational method can beat the 
current method of LHN at acceptable cost. 
 
 

 
Figure 2. UK Weather Radar Network 

 
 
The first step in developing a system for the 
assimilation of novel observations is 
monitoring the observations against the model 
background, to ensure that the observations 
are of sufficient quality, and the fit between the 
observations and the model is good enough, 
to fulfil the assumptions of the data 
assimilation method being used. For 3D-VAR 
and 4D-VAR, that means that the observations 
should be unbiased, and that the minimisation 
problem is only weakly non-linear. The radar 
data must therefore be processed to remove 

artefacts such as clutter and anomalous 
propagation, and the observations selected for 
assimilation must be sufficiently close to the 
model background to allow the assumption of 
approximate linearity to hold. 
  
The Met Office has implemented a Radar 
Quality Management System (RDQMS) to 
address issues of radar data quality and 
reliability, which impact not only on data 
assimilation, but also hydrological applications 
(Georgiou et al. 2011).  
 
Figure 3 illustrates the radar data processing 
chain. Data preprocessing is performed on the 
RADARNET server, which passes data to the 
Observation Processing System (OPS). 
Preprocessing includes options to average in 
range and azimuth, to recalibrate, to measure 
the noise level for each averaged ray and 
perform noise subtraction, and to set flags for 
clutter, partial beam blockage and speckle. 
The data is encoded in NetCDF and Grib2 files 
with all the quality control information and 
metadata. 
  
The OPS performs quality checks using the 
model background for all observations 
ingested into the Met Office data assimilation 
system. The observations are filtered using 
quality control flags. A forward model is used 
within OPS which simulates reflectivity using 
the rain and ice water content from the UM. A 
simple correction is made for beam bending 
and earth curvature; attenuation and beam 
integration are not currently accounted for but 
will be included in future versions of OPS. 
Superobbing can be performed on either a 
polar or the model grid, and there is an option 
to Poisson thin the data. Thinning the data 
before assimilation is important not only to 
reduce the data volume and reduce the cost of 
VAR, but also as assimilating observations 
which are closer than the observation error 
correlation lengthscale may be detrimental to 
the analysis.  
 
The 1D-VAR retrievals of humidity and 
temperature profiles are also performed within 
OPS. Quality checked and superobbed 
observations are provided with columns of 
model variables at observation locations to 
VAR for assimilation. VAR provides 
increments to the UM. 
 
 
 



 
Figure 3. Radar data processing chain 
 
Recent developments at the Met Office have 
focussed on the development of the 4D-VAR 
system to assimilate radar reflectivity 
observations directly, and the remainder of this 
paper discusses this work. 
 
3. DEVELOPMENTS TO 4D-VAR 
 
The Met Office 4D-VAR system (Rawlins et al. 
2007) has an incremental formulation, where 
the UM is used to provide the background, and 
a simplified, linear model, the perturbation 
forecast (PF) model, is iterated during the 
minimisation procedure to provide updated 
values of the model guess fields through the 
assimilation time window. Following each run 
of the PF model, its adjoint, which is used to 
calculate gradients for the minimisation, is run 
backwards through time. The model variables 
are transformed into control variables which 
should be uncorrelated. The control variables 
used in the Met Office VAR system are 
velocity potential, stream function, unbalanced 
pressure and a humidity variable which 
represents total water. 
 
Implementing assimilation of radar reflectivity 
within the VAR system has involved the 
introduction of a reflectivity operator, and a 
linearization of the operator and its adjoint, 
and enhancements to the PF model to include 
a rainrate model field, from which reflectivity is 
calculated. The reflectivity operator has the 
form: 
 

Z [mm
6
 m

-3
] = ZR + ZI                   (1) 

 
where the rain component is given by: 
 

ZR = 181R
7/4.67

                       (2) 
 

 
 
 
 

where R is the model rainrate in mm hr
-1

 
interpolated to the observation location, and 
the ice component is given by: 
 

ZI   = 10
0.035(T-273.15)+3.2

 qI
1.67

      (3) 
 

where qI is the model ice water content in  
kg kg

-1
 and T is the model temperature in K 

interpolated to the observation location. The 
VAR system includes a cloud incrementing 
operator, by which qI is related to total water, 
which could be used in the assimilation 
procedure, alternatively the PF model could be 
developed to explicitly account for ice, or the 
ice term could be used purely for the UM 
background, with increments to total water 
calculated via the rainrate term. 
 
When developing the PF model, a balance 
must be maintained between increasing 
physical realism, whilst avoiding unnecessary 
complexity which would make the system 
more non-linear and hence cause problems in 
minimisation. This is particularly challenging 
for cloud and precipitation microphysics which 
are inherently non-linear. 
 
The current representation of the rainrate field 
in the PF model is as a diagnostic variable 
which is calculated from the condensed water 
increment in an autoconversion term. A set 
fraction of condensed water is autoconverted 
into precipitation during a model timestep. 
There is no attempt to represent evaporation, 
which could potentially lead to negative water 
contents in the linear framework. 
Improvements to this representation are 
currently being researched, and tested using 
linearization tests, where the PF model 
increments are compared to UM increments.  
 
A limitation of this approach is that where 
there is no rain in the model background, there 
is no gradient with respect to rain in the 4D-
VAR cost function, and hence no means by 
which to introduce rain.  Where there are large 
differences between the model and 
observations, the observations will have to be 
rejected to avoid the introduction of strong 
non-linearity. Thus misplacement of 
convective systems in the model with respect 
to the observations may be particularly 
challenging. Where observations can be 
assimilated, however, the model error 
covariances should allow the information to 
spread, and assimilating radar reflectivity 
observations in combination with the full set of 
standard observations should provide 
complementary information, constraining the 
analysis. 
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The case studies presented in this paper use 
polar superobbing of the reflectivity 
observations followed by binning in UM 
gridboxes. Thus far only rain observations 
have been successfully assimilated, although 
tests for the assimilation of ice observations 
are being performed. The method used for 
identifying reflectivity observations as being 
due to rain is checking for the model 
background temperature > 3°C, to ensure that 
melting snow should have completed melted, 
avoiding ambiguities due to the bright band. 
 
4. CASE STUDY - 5 APRIL 2011 
 
A number of experiments have been 
performed for a case study in the southern UK, 
using an observational data time of 0900Z, 5 
April 2011. This case was selected as it 
includes a number of distinct precipitation 
features of different scale, separated by areas 
of no rainfall. 
 
The case was dominated by moist, south-
westerly flow. A mature cyclonic system 
passed to the north of the UK, with an 
extended occlusion featuring secondary frontal 
waves passing over Wales and southern 
England. At 0900Z there is extensive rainfall 
over west and south-west Wales, over south-
east England and the Thames estuary, and 
there is a north-west south-east oriented band 
of rainfall over Dartmoor in the south-west of 
England, shown in figure 5 (top). The model 
background used in the experiments described 
in this report was generated from a NDP 
model spun-up from a 1 hour forecast dump 
from the 0600Z operational run of the UK4 
model. The background at 0900Z, shown in 
figure 4 (bottom) captures the overall pattern 
of rainfall over Wales, the south-west of 
England and the south-east of England, but 
the heavy rain in south Wales is too far south, 
and otherwise the rain in Wales is too tightly 
tied to the coast. The rain in the south-west of 
England is too intense and too extensive, 
rainfall in the south-east is insufficiently 
extensive, and there is spurious rainfall in 
central southern England. In the 4D-VAR test 
described in this report, the nominal analysis 
window was 0830Z – 0930Z, although with 
observations only available at 0900Z, this was 
effectively a 30 minute analysis window. 
 
 
 
 
 
 
 

 
 

 
Figure 4. Radar derived surface rainrate 
product, NIMROD, (top) and NDP model 
background surface rainrate, BACKGROUND, 
(bottom) for 0900Z, 5 April 2011. 
 
4.1 PRELIMINARY TESTS 
 
In preliminary investigations, following the 
coding of the reflectivity operator in OPS and 
VAR, and the introduction of rainrate 
increments on all model levels to the PF 
model, and successful adjoint tests, a very 
conservative 4D-VAR setup was used to 
produce a radar reflectivity assimilation test 
job which would converge, and be used as the 
basis for further tests seeking to improve the 
use of observation data in the analysis and the 
quality of the subsequent forecast runs.  
 
 
 
 
 
 



The conservative setup which first allowed 
convergence in VAR for radar reflectivity 
assimilation featured: 
 

 Rejection of all observations where 
the model temperature <3 C, 

 Rejection of all observations where |O-
B| > 5 dBZ, 

 Rejection of all observations where 
the simulated reflectivity is less than 
the radar noise level,  

 Thinning of observations to 1 
observation from an individual scan 
per 16 UM gridspaces, 

 Observation error set to 15 dBZ for all 
assimilated observations. 

 
It is noted that an observation error would not 
normally be set less than the rejection criteria. 
The initial value of 15 dBZ for the observation 
error was chosen on the basis of monitoring 
statistics which indicated that this was the 
mean O-B value for all radars over a period of 
three months. It should be noted that this is a 
very large difference, equivalent to 
approximately a factor of 10 difference in 
rainfall rate. This highlights one of the 
particular challenge of data assimilation for 
radar reflectivity, which is the large variability 
exhibited by precipitation features, and hence 
the difficulty in producing physically 
reasonable linear models of precipitation 
processes and the observation operator. 
 
The rejection of observations where the 
simulated reflectivity is less than the radar 
noise level excludes observations where the 
model rainrate is zero, and hence the gradient 
between reflectivity and rainrate is undefined, 
and also observations where the model 
rainrate is very small, in which case the 
gradient between reflectivity in dBZ units and 
rainrate becomes very large. 
 
Whilst the earliest tests allowed convergence, 
the analysis increments were very small, and 
the forecast runs were almost 
indistinguishable from the background run. A 
number of further experiments were performed 
varying a number of parameters to allow a 
closer fit to the observations whilst still 
allowing VAR to converge. In all tests 
performed to date, all observations with model 
temperature <3 °C were rejected, but different 
combinations of rejection threshold for rain 
observations, thinning step, and observation 
error were tested. It was found that reducing 
the thinning step to 1 UM gridspacing, 
increasing the rejection threshold to 10 dBZ 
and decreasing the observation error to 

0.5 dBZ gave a much greater impact of the 
observations on the analysis, whilst still 
allowing convergence. A test where the 
rejection threshold was set to 15 dBZ failed to 
converge. 
 
4.2 LIMITING INNOVATIONS 
 
Figure 5 (top) shows the observations 
assimilated in a test, REJECT, with the 
following observation processing settings: 
 

 Rejection of all observations where |O-
B| > 10 dBZ, 

 Thinning of observations to 1 
observation from an individual scan 
per 1 UM gridspace, 

 Observation error set to 0.5 dBZ for all 
assimilated observations. 

 

 

 
 
Figure 5. Reflectivity observations assimilated 
in test REJECT (top), where observations are 
rejected where |O-B| > 10 dBZ, and in test 
LIMIT (bottom), where innovations are limited 
to 10 dBZ, rather than being rejected. These 
plots show observations from all the available 
scans from all the radars in the domain in a 
plan view. 
 



Figure 6 shows a comparison between the 
radar derived surface rainrate product (top), 
the surface rainrate in the background 
forecast, BACKGROUND (second), the 
surface rainrate in the REJECT test (third), 
and the surface rainrate in a third test, LIMIT 
(bottom). It appears that in areas of the 
domain where observations are assimilated, 
the analysis of surface rainrate at 0900Z in 
test REJECT is improved with respect to the 
BACKGROUND run, but a very large number 
of observations have been rejected, 
particularly in areas where the background 
and observations differ the most. Considering 
that a large difference between the model 
background state and the observations does 
not necessarily imply a large error in the 
observations, but could be due to a poor 
background, it seems that a large amount of 
information content in the observations is 
needlessly lost by rejecting observations 
where O-B is large. In the latent heat nudging 
scheme, model latent heating profiles are 
rescaled by the ratio between the model 
surface rainrate and the radar derived surface 
rainrate, with a limit placed on the rescaling 
factor to avoid excessive gridscale forcing of 
the model. A similar approach could be taken 
within VAR, where rather than rejecting large 
innovations, we could limit the innovation to a 
value which allows VAR convergence, but 
retains the information provided by the 
observations that the simulated radar 
reflectivity should be incremented. 
 
To test this idea, a test, LIMIT, was setup with 
the following observation processing settings: 
 

 Limiting, rather than rejecting, O-B 
innovations to ± 10 dBZ, 

 Thinning of observations to 1 
observation from an individual scan 
per 1 UM gridspace, 

 Observation error set to 0.5 dBZ for all 
assimilated observations. 

 
Figure 5 (bottom) shows that a much larger 
number of observations were assimilated in 
LIMIT than in REJECT, and figure 6 (bottom) 
shows that this leads to an improved analysis 
of surface rainrate in the south-west and south 
Wales in particular. There is, however, an 
apparent bias in the impact of the observations 
on the analysis, with a much greater 
suppression of excessive rainfall than 
intensification of weak rainfall.  

 

 

 

 
Figure 6. Surface rainrate at 0900Z in 
NIMROD (top), BACKGROUND run (second), 
REJECT test (third) and LIMIT test (bottom). 
 
 



This is confirmed in figure 7, which shows the 
domain averaged surface precipitation rate for 
NIMROD, BACKGROUND, REJECT, LIMIT 
and a third test, SCALED-LIMIT, described 
later. Trials of variational assimilation of 
surface rainrates often had excessive rain in 
the early timesteps which rapidly span down 
as the model adjusted to thermodynamic 
balance. This problem is not evident is these 
tests of radar reflectivity assimilation, although 
this may be due to a negative bias in humidity 
increments. 
 
The bias is in fact a direct consequence of the 
use of radar reflectivity in dBZ units as the 
assimilated variable, and the specification of 
observation error and rejection/limit threshold 
in those units. As discussed by Wang et al. 
(2011), the linearization error for the 
linearization of the relationship between 
rainwater content, or rainrate, and reflectivity, 
is always positive. This leads to a dry bias in 
rainwater increments, and hence over-
suppression of excessive rainfall, and 
insufficient intensification of weak rainfall. 
 
Following this bias, the approach taken by 
Wang et al. (2011) is to assimilate rainwater 
content. As the intention of this project is to 
utilise the full range of reflectivity observations 
including those due to ice, a more general 
form of reflectivity observation will be tested as 
the assimilated variable. Statistics of 
observations, simulated observations, and 
innovation statistics will be used to inform the 
design of an improved observation operator. 
 
One further test with the current form of the 
observation operator, SCALED-LIMIT, was to 
replace the limit on innovation size with a limit 
on innovation scaled by 1/R, where R is the 
model guess of the rainrate. For a relationship 
between radar reflectivity, Z, and rainrate of 
the form: 
 

baRZ                            (4) 
 
which is assumed in the radar reflectivity 
observation operator, the gradient between the 
increments in the reflectivity in logarithmic dBZ 
units and  rainrate increments is: 
 

R
b

dR

dBZdZ 1

10ln

10][


              (5) 
 
Thus, scaling the innovation limit by 1/R 
effectively transforms the unit which is being 
limited to increments in rainrate. This should 
avoid excessively constraining the size of 

innovations at higher values of rainrate in the 
model guess. The observation processing 
settings used for the SCALED-LIMIT test 
were: 
 

 Limiting of |(O-B)/R| to  
± 10 dBZ/kg m

2
 s

-1
, 

 Thinning of observations to 1 
observation from an individual scan 
per 1 UM gridspace, 

 Observation error set to 0.5 dBZ for all 
assimilated observations. 

 
Figure 8 shows that the test SCALED-LIMIT 
led to greater intensification of surface rainrate 
in mid-Wales and the Thames Estuary, 
although the suppression of rainfall in central 
southern England is excessive, with some 
rainfall features which are observed in 
NIMROD removed in SCALED-LIMIT. 

 
Figure 7. Domain-averaged surface rainrate in 
mm hr

-1
 as a function of time, for NIMROD, 

BACKGROUND, REJECT, LIMIT and 
SCALED-LIMIT. 
 
A problem general to all of these direct 
reflectivity assimilation tests is that 
observations are only assimilated where there 
is at least some rainfall in the background. In 
this case, the limitations of this constraint are 
most evident in the south-east of England, 
where NIMROD shows widespread rainfall, but 
the background only has isolated areas of 
rainfall, and as shown in figure 5, relatively few 
observations are assimilated in the south-east 
of the domain, so that the assimilations are 
poorly constrained by observations in this 
area. 
 
At 0930Z, a spurious rainfall feature enters the 
domain from the western boundary, which 
leads to the worsening agreement between 
NIMROD and all of the model runs from this 
time on. This is because the lateral boundary 
conditions in this case are rather poor quality. 



A new case study with better quality boundary 
conditions would be required to allow more 
meaningful investigation of the performance of 
the 4D-VAR assimilation methods at longer 
forecast ranges. 
 
It is important to note that the NIMROD 
product is not ‘truth’, and is itself subject to 
observation and processing errors. A potential 
source of error in the NIMROD product in this 
case is the possibility of excessive orographic 
enhancement. As the radar scans cannot see 
the surface, assumptions must be made about 
effects such as evaporation and orographic 
enhancement, as the rain falls below the sight 
of the radar, to derive surface rainrates. 
Therefore rigorous verification should be 
performed with comparison to other 
observation types including clouds, not relying 
on the NIMROD product alone. 
 
5. CURRENT AND FUTURE WORK 
 
A number of potential improvements to the 
direct assimilation scheme are currently being 
developed. These can be classified into those 
increasing the realism of the reflectivity 
operator, and changes to the variational 
system. 
 
Interpolation for radar reflectivity is currently a 
simple linear interpolation in space and time 
from model fields, as is the case for most 
traditional observations. Integrating over the 
radar beam-width in the vertical would be fairly 
straightforward to implement in OPS as OPS 
retrieves model columns corresponding to the 
location of each observation. 
 
The current system does not allow for 
attenuation of the radar beam. Gaseous 
attenuation is addressed by preprocessing in 
RadarNet, however, attenuation by 
hydrometeors can have a much larger effect, 
and has the largest impact at high precipitation 
rates, which are the weather situations which 
will potentially have the greatest impact on the 
public and hence where observational data 
quality is most critical. 
 
 
 
 
 

 
Figure 8. Surface rainrate at 0900Z in 
NIMROD (far left), BACKGROUND run (centre 
left), LIMIT test (centre right) and SCALED-
LIMIT test (far right). 
 
 



A consortium from the University of Reading 
and University of Surrey, in collaboration with 
the Met Office, is carrying out project funded 
as part of the NERC Flooding from Intense 
Rainfall programme. One work package 
includes the application of a method for 
constraining total path attenuation (Thompson 
et al., 2011), which could have a significant 
impact in reducing radar reflectivity errors at 
high precipitation rates. A method must be 
applied to account for hydrometeor 
attenuation. There are two general 
approaches which could be taken: one is to 
correct the observations for the effect of 
hydrometeor attenuation, as is done for 
gaseous attenuation. The other approach is to 
forward model attenuation by hydrometeors. 
The correction approach is taken for current 
RadarNet products, where the reflectivity is 
adjusted gate-by-gate along a radar beam. 
The multiplication of errors means that this 
method is unstable, and thus the correction 
has to be limited. This means, however, that in 
certain cases attenuation is severely 
underestimated. The forward modelling 
approach would avoid the problem of unstable 
error growth in the gate-by-gate method, but 
research will be required to develop a suitable 
linearization of an observation operator which 
includes forward modelling of attenuation. 
 
A limitation of the current 4D-VAR reflectivity 
assimilation method is that only rain 
observations are used. Assimilating 
observations from ice, above the melting layer, 
could potentially provide much more 
information on the state of the mid-
troposphere, allowing an improved analysis of 
mid-level clouds. A number of approaches to 
ice incrementing could be investigated: use of 
the cloud incrementing operator, which 
diagnoses the split of total water into water 
vapour, liquid and ice cloud; using the cloud 
increment in the PF model microphysics 
scheme, or developing hydrometeor control 
variables. The first two options would be 
straightforward to implement in the existing 
VAR code and these are currently being 
investigated. 
 
The impact of assimilating reflectivity 
observations together with other observation 
types should also be investigated, and a wider 
range of case studies examined, particularly 
cases from field campaigns where a wider 
range of results are available to validate the 
results of reflectivity experiments.  Initial 
results from a number of other case studies 
will be presented in the oral presentation.  
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