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1.  Introduction 

 

Radar beam pattern describes the spatial 

distribution of the power emitted by a radar. 

The power level of side lobes is usually 

much lower compared with that of the main 

lobe and is neglected. The radar beam 

usually means the beam of the main lobe; 

the beam width indicates the region that 

contains about 80% of the power radiated by 

the main lobe. In a plane passing through the 

main lobe axis, beam width is an angular 

distance between two points where the 

power is half of or 3-dB lower than the peak 

value in the axis direction. The beam pattern 

of a still circularly symmetric beam is often 

represented by a Gaussian function and the 

beam width is a constant. That is the beam 

width is independent from the direction in 

the cross section perpendicular to the beam 

axis. For a scanning beam, such as the beam 

of WSR-88Ds and the Atmospheric 

Radiation Measurement (ARM) program 

scanning cloud radars, the antenna motion 

combined with digital signal processing 

broadens the beam width. If the beam is 

circularly symmetric in stationary, the 

effective beam will no longer be circularly 

symmetric but elliptic symmetric with the 

major axis in the scanning direction. Zrnic 

and Doviak (1976) reveal that the effective 

beam is mathematically the convolution of 

stationary beam pattern and the impulse 

response function of the integrator. They 

give the graphic solution for the one way 

normalized effective beam width (1993) and 

show the impact of the broadened beam 

width on reflectivity measurements. Blahak 

(2008) proposes that the arithmetic average 

of the still beam pattern for each transmitted 

pulse during the dwell time can be used to 

approximate the effective beam and he also 

provided the associated equation to calculate 

the measured reflectivity. Fang and Doviak 

(2008) find that the effective beam width 

should been used not only for the reflectivity 

measurement but also for the radial velocity 

and spectrum width measurements. This 

study will show: 1) the effective beam width 

for higher order velocity moment 

measurement is different from that for 

reflectivity measurement; 2) the effective 

beam width is not only the function of 

antenna rotation rate but also the function of 

elevation angle; 3) for scanning beam, 

different signal processing method, such as 

pulse-pair processing (PPP) and Fast Fourier 

Transform (FFT), coincides with different 

spectrum width equation. 

 

2. Effective Beam Pattern for the 

Measurement of Z and Other Higher 

Order Moments 

  

This section will provide an explicit 

analytical expression of the effective beam 

pattern for the azimuthally scanning beam at 

any elevation angle. 

  

2.1  General solution 

Our starting point is the correlation 

coefficient at the output of an integrator with 
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a lagged time mTs. It can be obtained by 

replacing Ts in Eq. (B6a) of Fang and 
Doviak (2008) with  = mTs. That is 
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where Ts is the pulse repetition time, r  the 

position vector,  0 0 0 0, ,r r    the center of 

V6 at lagged time mTs in spherical 

coordinate system, 0  the zenith angle of 

radar beam axis, tn the ending time of the n
th

 

dwell time MTs, θ and   the angular 

distance from beam axis in elevation and 

azimuth direction respectively, Ws the range 

weighting function,  r  the range 

propagation path loss, f 
2
 the one-way 

radiated power pattern or an angular 

weighting function in azimuth direction,   

the antenna rotation rate, 2

θ  the second 

central moment of the two-way power 

pattern in elevation direction, 2

  the second 

central moment of two-way power pattern in 

the azimuth direction,    the azimuth 

displacement in Ts and θ1 the one-way half 

power beam width for the stationary beam 

and  r  is the reflectivity. The diacritical 

circumflex indicates that it is an estimated 

value not an expected value. The over bar 

signifies a volumetric mean weighted by 

beam pattern and reflectivity. The 
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superscript e emphasize that the effective 

beam pattern is used.  ˆ , ,ost s nT r t  is 

correlation coefficient due to hydrometer’s 

oscillation or/and wobbling, turbulence and 

shear of mean wind across V6. It is an 

estimated value not an expected value. It 

changes from one dwell time to the next 

because of the fluctuation relating to the 

turbulence.  

In Eq. (1a), the denominator is the total     

power and the reflectivity at a point, i.e. 

 r  is weighted by Iw2, wherefore Iw2 is 

the azimuth effective beam pattern for 

reflectivity measurement. It differs from Iw1 

that is on the nominator in Eq. (1a) and will 

weigh and influence high order velocity 

moments, such as radial velocity and 

spectrum width. Plugging Eqs. (1g) (1h) into 

Eq. (1c) and (1d), completing integrations 

and noting Eq. (1i), we have 
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where 4

enf  is the two way effective radar 

power beam pattern that is due to the 

combination impact of antenna rotation and 

signal processing. Replacing 0 with 0  in 

Eq. (2d), one obtains 
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This is for high order moment measurement 

and, in fact, is also the generalized form of 

the effective two way beam pattern in 

azimuth direction. It reduces to  4

0enf    

when m = 0, which corresponds to the zero 

lagged time of the correlation coefficient of 

the radar signal.  

 

2.2   Effective beam width for reflectivity 

measurement 

Using Eq. (2d) and following the 

procedure given by Doviak and Zrnic (1993), 

one can find the analytical solution that 

defines the effective beam width for 

reflectivity measurement. It is read as 
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Eq. (3) is very similar to Eq. (7.34) of 

Doviak and Zrnic (1993), but Eq. (3) is not 

only the function of radar antenna 

rotationrate, but also the function of the 

elevation angle of the radar beam because of 

Eq. (1i). It can be seen that Eq. (3) will 

reduce to Eq. (7.34) of Doviak and Zrnic 

(1993) only if θo = 90
o
, wherefore the 

existing equation can be only applied to the 

beam scanning in a flat surface, such as in a 

horizontal plain or a vertical plain. For the 

beam azimuthally scanning in a conical 

surface, Eq. (3) should be applied.  Fig. 1 

shows the  
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Fig. 1  The dependency of normalized effective beam width on  

normalized azimuth displacement at different zenith angle. 

 

dependency of the normalized effective 

beam width on normalized azimuth 

displacement within a dwell time at three 

different zenith angles. For the same antenna 

rotation rate, the effective beam width 

increases with the increase of the elevation 

angle. 

 

2.3 Effective beam width for high order 

moments 

Using Eq. (2e) and following the 

procedure presented in previous section, we 

obtain the analytical expression that defines 

effective beam width for high order velocity 

moment measurement, 
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Eq. (4) differs from Eq. (3). It is not only the 

function of antenna rotation rate and radar 

beam elevation angle but also the function 

of lagged time mTs.  However, Eq. (4) will 

reduce to Eq. (3) if m << 2M.  

 

3. Spectrum Width Equations Related to FFT and PPP 

 

Substituting Eq. (2a) for Eq. (1a) and 

Fourier transforming the resultant equation, 

Fang and Doviak (2008) obtain the 

expression for normalized Doppler spectrum 

that can be used to find out the spectrum 

width equation including various 

contributors. Among those contributors, the 

squared spectrum width duo to antenna 

rotation is written as 
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Here, F  signifies the Fourier transform; 
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and the 

exponential function on right side is part of 

Eq. (2a).  However, Eq. (2a) has another 

term,  4

0enf   , that is the function of 

lagged time too as shown in Eq. (2d). In 

their 2008 work, Fang and Doviak neglect 

the term 2smT . In fact, we do not know if 

we can neglect this term. The result from 

 4

0enF f      is too complex to obtain an 

analytical expression and its significance 

may need to be determined from real 

observational data, but this discussion 

implies that in addition to 2

 , for the 

spectrum width obtained using FFT, there 

should be something else in the spectrum 

width equation that also relates to antenna 

rotation and contributes to the spectrum 

width measurement. That is 
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Here, σs, σα, σo, and σt, represent the 

spectrum widths due to mean wind shear, 

antenna rotation, hydrometer’s oscillation 

and/or wobbling, and turbulence, 

respectively; Tc is the coupled term due to 

the coupling between shear and turbulence. 

It is noteworthy that the above equation is 

applicable to the spectrum width obtained 

from Doppler spectra that is generated using 

FFT. What is the spectrum width equation 

for PPP method? For PPP the lagged time or 

m is fixed in Eq. (2a), and  4

0enf    and 
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 are no longer the 

function of the lagged time, but PPP method 

uses all the lagged-one pairs in a dwell time, 

wherefore the spectrum width equation 

should same as Eq. (6) for PPP method. 

However, PPP needs to assume a symmetric 

Doppler spectrum, if this assumption is not 

satisfied, the spectrum width obtained using 

PPP might be different from that obtained 

from FFT.  

 

4. Summary and conclusions 

 

Starting from the correlation coefficient 

at the output of the integrator, this study 

shows that for a scanning beam the radar 

effective beam width is not only a function 

of the radar antenna rotation rate, but also a 

function of the elevation angle for the 

reflectivity measurement. The effective 

beam width is even the function of the 

lagged time for the measurement of high 

order velocity moments, such as radial 

velocity and squared spectrum width. 

However, if m << 2M, this equation will 

reduce to that for the reflectivity 

measurement.  The existing expression that 

defines the effective beam width is only 

applicable to the radar beam scanning in a 

flat surface, such as in a horizontal or 

vertical plain. For the beam scanning in a 

conical surface, the effective beam should 

be calculated using the equation given in 

this study. This study also shows that for 

different signal processing method, such as 

FFT and PPP, the spectrum width equations 

are different from each other. For the FFT 

method, in addition to 2

 , the spectrum 

width equation should include something 

else that also related to the antenna rotation 

and contribute to the spectrum width 
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measurement. Whether or not this extra 

contribution is important needs to be 

determined by analyzing radar 

measurements. For PPP method, because the 

lagged time is fixed, there will be no 2

  and 

extra contribution due to radar antenna 

rotation. These differences found in this 

study is particularly important when radar 

measured spectrum width is used to retrieve 

turbulence in clouds. 
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