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1. INTRODUCTION 

Radar reflectivities can be used to estimate 
rainfall/snowfall rates, dual-frequency ratios of radar 
reflectivities can be used to identify hydrometeor types, 
while polarimetric radar measurements can be used to 
estimate rainfall/snowfall rates, cloud ice-water content, 
identify hydrometeor types, and detect hail. Studies that 
combine polarimetric measurements at different 
frequencies in order to better characterize snow are less 
common. 

Ground-based weather radars usually operate at 
lower microwave frequencies (S, C and X bands), where 
the return signal is not sensitive to the exact shape of 
snowflakes. On the other hand, higher frequencies are 
becoming more common in space-based radars and 
radiometers on satellites, such as NASA's Tropical 
Rainfall Measurement Mission (Ku), Global Precipitation 
Measurement Mission (Ku and Ka), CloudSat (W), and 
ESA's EarthCARE (W), on aircrafts, such as the NASA 
APR2 radar (Ku and Ka), and on mobile ground-based 
radars, such as the NASA D3R radar (Ku and Ka). Many 
of these instruments are used at polar latitudes, where 
most of the precipitation that reaches the ground is 
frozen and can accumulate as snowpacks during the 
winter season. It is therefore necessary to monitor the 
effect of snow on the environment both in local and 
global scale. The availability of simultaneous multi-
frequency dual-polarization radar measurements can 
help to constrain the inverse problem of characterizing 
falling snow from the measurements. 

Past studies have shown the importance in 
capturing the irregular structure and shape of falling 
snowflakes when their size reach wavelength scale 
(Westbrook et al. 2006; Ishimoto 2008; Petty and Huang 
2010; Tyynelä 2011). As even single ice crystals exhibit 
a large morphological variation, as shown by the 
classification systems, adding precipitation processes, 
such as aggregation, riming, melting and breakup along 
the vertical column, further complicates the snow 
characterization from remote sensing observations. To 
help solve this inverse problem, it is therefore crucial to 
make in situ measurements of the physical properties of 

the falling snow in order to constrain the unknown 
factors. The most important physical properties for snow 
are particle size, number density and mass as a function 
of size, and aspect ratio. These are all strongly affected 
by the ice crystal habit. 

In this manuscript, we model pristine ice crystals of 
various types and their aggregates, use the discrete-
dipole approximation (DDA) to compute backscattering 
properties from the modeled snow particles, and 
compare the backscattering properties to radar 
observations obtained in the GPM Cold-season 
Precipitation Experiment (GCPEx) during the winter of 
2012. We present a case study that demonstrates how 
the forward modeling can be applied to multi-frequency 
dual-polarization measurements in order to characterize 
falling snow. We also analyze the backscattering 
properties using cluster validation indices (CVIs), which 
are statistical properties of a data set that measure how 
clustered it is with respect to the backscattering 
properties. This analysis helps us to choose, which 
measurements and their combinations provide best 
characterization. 

2.         NUMERICAL METHODS 

Due to the importance of shape in scattering at the 
resonance regime (size parameter x=ka>1, where k is 
the wavenumber of the incident wave and a the volume-
equivalent-sphere radius of the particle), it is crucial to 
use a physically realistic model for the various shapes 
for snowflakes and ice crystals. In the present study, we 
use six different pristine ice crystal types: hexagonal 
column, hexagonal plate, needle, ordinary dendrite, fern-
like dendrite, and six-bullet rosette, covering most of the 
common types occuring at various atmospheric 
conditions and altitudes. In order to mimic natural 
shapes, we use the measured thickness-to-diameter and 
length-to-diameter ratios reported by Pruppacher and 
Klett (1997) for the different types of ice crystals. 

For the purpose of comparison, we also include 
lump graupel generated with the fractal model by 
Ishimoto (2008). For generating graupel, the fractal  

 



  

 
 

Snowflake type Size range [mm] D0 [mm] 

hexagonal 
column (N1e) 

0.1-2.0 0.3-0.8 

hexagonal plate 
(P1a) 

0.1-2.0 0.3-0.8 

needle (N1a) 0.5-3.0 0.7-1.3 

ordinary dendrite 
(P1e) 

0.5-5.0 0.8-1.8 

fern-like dendrite 
(P1f) 

1.0-8.0 1.6-3.0 

six-bullet rosette 
(C3b) 

0.1-0.6 0.3-0.6 

lump graupel 
(R4b) 

0.5-5.0 0.6-1.2 

aggr. of needles 0.5-8.0 0.9-3.4 

aggr. of ordinary 
dendrites 

0.5-17.8 1.4-5.6 

aggr. of fern-like 
dednrites 

1.0-24.0 2.4-9.4 

aggr. of rosettes 0.1-4.4 0.8-1.5 

Table 1: Snowflake size distributions for the shape 
models. 

 
dimension of 2.7 was chosen in order to get a decent fit 
to the measured mass -diameter relationship. 

To generate realistic aggregates, we use the 
physically-based aggregation model by Westbrook 
(2004). We use four types of aggregate snow: 
aggregates of needles, ordinary dendrites, fernlike 
dendrites, and six-bullet rosettes. The number of crystals 
in each aggregate is varied and depends on the ice 
crystal type. For needles and dendrites, we use 2, 10, 
20, 30, 40, and 50 monomers, while for the six-bullet 
rosettes, we use 2, 5, 10, 15, and 20. 

Single ice crystals tend to fall in preferential 
orientation (e.g., Cho et al. 1981; Noel and Sassen 
2005). To simulate this, we orient the generated ice 
crystals according to the measurements by Noel (2005) 
for warmer clouds, which indicate highly horizontal 
orientation with an average canting angle of about 2 deg 
and a Gaussian distribution with a standard deviation of 
1 deg. It should be noted that these values are based on 
observations of planar crystals and may not be 
representative of all the types used in this study. The 
orientation of the aggregates is assumed to be random, 
although a recent study by Hogan (2012) indicates a 
preferential orientation. The average aspect ratio for all 
the modeled aggregate types is close to 0.6.  

Examples of the modeled shapes for the different 
ice crystal types and their aggregates are shown in Fig. 
1. Note that we only model dry pristine particles and their 
aggregates.  

In Fig. 2, we show the mass of both the modeled 
single ice crystals and the measured values from various 
field studies as a function of the maximum horizontal 
diameter. The agreement between the measurements 
and the shape models is overall good, but some crystal 
types, such as the single dendrites exhibit larger mass 
for the models. There are two main reasons for the 
differences for single crystals. First, the measured mass-
-diameter relationship and the thickness-diameter ratio 

for ice crystals are from different studies, which can 
produce a selection bias. Second, the thickness-
diameter ratio may not be constant over the whole 
crystal, as we have assumed in our 2-D dendritic shape 
model. Natural dendrites accumulate more ice to the 
center of the branches as they grow, which produces 
less overall mass than our model. 

For the aggregate masses (Fig. 3), the agreement 
between the measurements and shape models is also 
reasonable, although the modeled aggregates of 
needles and ordinary dendrites seem to have a factor of 
about 0.5 less mass than the measurements on 
average. However, it should be noted that some of the 
measurements include various mixtures of ice crystal 
types and their aggregates including both partly melted 
and rimed snow making a direct comparison unreliable. 

A volume observed by a radar is composed of many 
dissimilar particles in different orientations and sizes. To 
simulate this, we generate 1000 individual ice crystals 
for each type randomly chosen within the appropriate 
size range, and 100 random aggregates of ice crystals 
for each type and for each number of crystals in the 
aggregate. For the lump graupels, we use 400 random 
fractals making the total number of different snowflakes 
used in this study 8700.  

The radar observables are computed by numerically 
averaging over different size ranges depending on the 
snowflake type.  Also, due to the preferential orientation 
of the ice crystals, the elevation angle of the radar is 
varied: 0, 15, 30, 45, 60, 75, and 90 degrees. We 
assume exponential particle size distribution. In Table 1, 
we show the size ranges of the various ice crystals and 
aggregates, and the median volume diameter D0 values 
for each snowflake type. The values have been chosen 
to reflect the natural variation in snowflakes following 
Pruppacher and Klett (1997). 

 
Figure 1: Example shapes of the modeled 
snowflakes. 

 



  

 
 

 
Figure 2: Mass of the modeled single ice crystals as 
a function of the maximum diameter and 
corresponding m-D relationships from field 
measurements. 

 
Figure 3: Same as in Fig. 2, but for aggregates. 
 
3. STATISTICAL MEASURES TO ANALYZE A 

SCATTERING DATASET 

 
Taking into account the various snowflake types 

used in this study, their PSD parameters, and 
measurement parameters, such as the elevation angle, 
radar frequency and radar observables, the resulting 
data space becomes infeasible to analyze with simple 
methods. A systematic study of all possible data element 
combinations is difficult to present in a coherent fashion 
and does not reveal hidden trends and statistical 

significance. However, a large scattering database can 
be seen as a distribution in a multi-dimensional space 
and can be analyzed statistically by measuring how well 
clustered it is with respect to different combinations of 
measurement parameters. This can help in devising an 
optimal measurement strategy to characterize falling 
snow. 

      The goal in clustering algorithms is to use 
statistical measures to find a set of clusters from the 
data set without a priori knowledge of the optimal 
clustering.  In our case, the partitions are already known 
beforehand, so we only need to measure how clustered 
the partitions are. Although the measures for quantifying 
data clustering vary, they are commonly called cluster 
validation indices (CVI). Each CVI is defined in a 
different way and can have values ranging widely with 
some having a closed interval of values and some 
having values up to infinity. Comparing CVI values from 
different methods can therefore be ambiguous. 
However, using several methods at the same time can 
reveal common trends and provide a more reliable basis 
for determining which combinations of measurement 
parameters are better than others in characterizing 
snow. In this study, we have chosen three common 
internal CVIs: the Davies-Bouldin index (DBI), Dunn 
index (DI), and the Silhouette index (SI). 

 
4.  RESULTS FROM THE STATISTICAL ANALYSIS 

 
Table 2 shows some of the results of analyzing all of 

the backscattering properties using the statistical 
measures described in Section 3. Both the optimal 
frequency bands and elevation angles are shown for 
each type of measurement. The actual CVI values are 
not shown. The horizontal reflectivity ZH by itself is not 
as good as the other polarimetric observables for 
characterization, but higher frequencies seem to work 
better. Ka band shows overall best characterization for 
both ZDR and the circular depolarization ratio (CDR), 
while  the linear depolarization ratio (LDR) favors even 
higher frequencies. Middle elevation angles provide best 
results for ZDR due to smaller variance at higher angles, 
while CDR favors low angles. However, there is no 
common trends for the other observables.  

For the dual-frequency ratios (DFRs), higher 
frequencies provide better characterization. However, 
slightly off-nadir measurements  seem to be better than 
nadir measurements. This may be due to the fact that at 
slightly off-nadir direction, the oriented ice crystals 
appear more asymmetrical and therefore more non-
spherical, which increases the variation in the 
backscattering cross sections. Having a large difference 
in frequencies results in worse characterization than 
having two higher frequencies. When combining two 
DFRs, which share one frequency, higher frequencies 
are better. Ka band is optimal, when combining DFR and 
ZDR. There does not seem to be any noticeable trend 
with the optimal elevation angles for DFR combinations. 

 
 
 
 



  

 
 

Measurement Optimal freq. band Optimal elev. 
Angle [deg] 

 DBI DI SI DBI DI SI 

ZH S W W 45 75 0 

ZDR Ka Ka W 60 60 60 

LDR W W Ka 60 0 90 

CDR W Ka Ka 0 0 0 

DFR Ku/Ka - - - 30 30 75 

DFR Ka/W - - - 75 15 0 

DFR W/220 - - - 90 30 75 

DFR Ku/Ka + 
Z DR,Ku 

- - - 0 30 0 

DFR Ku/Ka + 
DFR Ka/W 

- - - 45 30 90 

DFR Ka/w + 
DFR W/220 

- - - 90 15 75 

ZDR + CDR Ka Ka W 75 60 0 

Table 2: Cluster validation for the backscattering 
properties using the Davies-Bouldin (DBI), Dunn (DI), 
and the Silhouette (SI) indices. Bold font marks the 
overall best clustering for each index. 

 
5.   EXAMPLE COMBINATIONS OF MEASUREMENTS 

 
Fig. 4 shows the DFRKu/Ka and DFRKa/W combination 

plotted together at 90 deg elevation angle. The results 
are similar to those in studies by Kneifel et al. (2011) and 
Leinonen et al. (2012) showing that the aggregates 
separate from the more spherical graupels, which have 
larger DFRKa/W values. This indicates that higher-
frequency measurements near nadir that produce DFRs 
similar to spheroidal models may be due to heavily rimed 
snow or graupel. Note that single crystals are impossible 
to characterize at 90 deg elevation due to the 
preferential orientation of the crystals, which produces 
Rayleigh-type backscattering. However, at lower 
elevation angles they show larger separation with the 
dendrites and hexagonal plates clearly separating from 
the aggregates. On the other hand, different aggregate 
types are also difficult to distinguish from each other. 

In Fig. 5, we show ZDR and CDR plotted together at 
the Ka band and at 0 deg elevation angle. As can be 
seen, this provides a fairly good characterization and 
produces five different clusters/snow types: hexagonal 
plates, dendrites, columns/needles, aggregates, and 
graupels/rosettes. It should be noted that measurement 
limits and attenuation of the radar signal have not been 
taken into account, when computing the CVIs, which 
may result in unpractical characterization in some cases. 

 
Figure 4: Dual-frequency ratios DFRKu/Ka and DFRKa/W 
at 90 deg elevation angle for the models. 

 
Figure 5: CDR and ZDR for the modeled snowflakes at 
the Ka band and at  0 deg elevation angle. 

 
6.       SNOWFALL CASE DURING GCPEX 

 
The goal of the GPM Cold-season Precipitation 

Experiment (GCPEx) was to study how passive and 
active multi-frequency sensors could characterize falling 
snow by collecting both in situ microphysical and remote 
sensing data. In this study, we use the measurement 
data from the mobile NASA D3R ground-based radar, 
which is a dual-polarization Doppler radar operating at 
Ku and Ka bands, and the APR2 radar onboard the 



  

 
 

NASA DC-8 aircraft also operating at Ku and Ka bands. 
For this case study, we have selected 27th of January at 
03:05 AM during which snow was reported falling. 

 D3R radar was operating close to the DC-8 aircraft 
route and scanning within 15 deg in the azimuthal 
direction from the aircraft flight path (see Fig. 6). The 
APR2 radar was pointing towards the ground. We do not 
use the Ka data from D3R due to attenuation problems. 

 
Figure 6: Location and measurement direction of 
D3R radar (red) and the flight path of APR2 radar 
(black). 

 
In Fig. 7, we show ZH and ZDR measured by D3R, 

and the DFRKu/Ka measured by APR2 matched in range 
and height. There is a melting layer above 1 km altitude 
with a visible bright band.  Between 2 and 4 km altitudes, 
there are two bright areas driven by wind shear. These 
areas are associated with low ZDR values (< 1 dB) 
indicating aggregates. There are also many areas close 
to the aggregation which show larger ZDR values and 
lower ZH values indicating possible ice crystals. To verify 
this, we plot ZDR (D3R) and DFRKu/Ka (APR2) together 
with all matching range-height cells above 2 km altitude 
in Fig. 8. Results from the DDA computations are also 
shown for both needles (green symbols) and ordinary 
dendrites (red symbols). For the computations, we have 
mixed the single ice crystals and aggregates together by 
varying the mixing ratios, and D0 for both crystals and 
aggregates. As can be seen, dendrites and aggregates 
of dendrites seem to be the more likely candidates due 
to the larger span of values coinciding with the radar 
measurements. Also, for ZDR there seems to be an 
average signal of about 0.5 dB for aggregates (large 
DFR values), which indicates that the assumption of 
random orientation may not be appropriate here. This 
value is the same as shown by Hogan et al. (2012). 

Note that due to the temporal and spatial 
differences of D3R and APR2 in this case, a good 
volume matching is impossible to do. This may explain 
the large variance of values. Also, adding airborne 

microphysical probe data to the analysis may further 
narrow down the possible model parameters. 

 
Figure 7: Horizontal reflectivity (top panel) and 
differential reflectivity (middle panel) measured by 
D3R, and dual-frequency ratio at Ku and Ka bands 
measured by APR2 radar (bottom panel). The 
measurements were taken during the GCPEx 
campaign in January 27th, 2012. 

 
Figure 8: The differential reflectivity from D3R and 
DFRKu/Ka from APR2 plotted with DDA computations 
for needles (green symbols) and dendrites (red 
symbols). 

 
 
 
 



  

 
 

7.               CONCLUSIONS 
 

In the present study, we have modeled physically 
realistic snowflakes of various shapes and sizes to 
analyze their size-integrated backscattering properties. 
The backscattering properties have been computed at C, 
S, X, Ku, Ka, W, and 220 GHz bands and then 
compared to radar observations in order to characterize 
snowflake types. 

       The results confirm that DFRs, especially at 
higher radar frequencies, are promising measurements 
to characterize snow, as already demonstrated by other 
studies (Kneifel 2011; Leinonen 2012). They also show 
that, in principle, using even higher frequency bands 
(220 GHz) than W can improve the characterization. 
However, attenuation of the radar signal can become 
problematic at such high frequency range, and may 
hinder its applicability. The transition region from 
Rayleigh scattering to the resonance region between Ku 
and Ka bands seems to provide overall the best 
characterization, while also avoiding the possible 
attenuation problems. 

The presence of single, preferentially oriented ice 
crystals has a profound effect on the polarimetric 
backscattering properties. The results indicate that ZDR 
and the depolarization ratios (LDR, CDR) provide better 
characterization than DFRs and this is enhanced even 
further by combining these measurements together.  

When the computations are compared to radar 
measurements from aircraft and ground, the results 
show that modeling together with dual-polarization multi-
frequency measurements can be used to characterize 
snow. They also demonstrate the advantage of 
combining dual-polarization measurements, especially 
ZDR, with DFRs, which can narrow down 
characterization. Additional advantage of using these 
observables is that they are both independent on the 
intercept parameters in PSDs and therefore require less 
assumptions of the snowfall. 
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