

Motivation

Many more lightning flashes happen inside clouds than come to ground, and modern VHF Lightning Mapping Arrays (LMAs) readily detect these flashes in four dimensions. In addition to providing a count of flashes, these systems also map the complete extent of the flash in the cloud.

As shown above, total flash energy can be calculated from LMA data and depends on moments of the flash size distribution (Bruning and Thomas, 2015). Furthermore, the flash energy distribution varies with length scale much like a Kolmogorov spectrum, including a 5/3 scaling regime (Bruning and MacGorman, 2013).

The distribution of flash sizes may shift depending on the average flash size (A) or the total number of flashes (C) or its width. Observed variability (including in volcanoes; Behnke and Bruning, 2015) typically shows both (B).

Size and rate typically both increase as storm begins, and are anticorrelated during for the rest of the storm's life. Ware (2015) showed that flash size gradient ascends along storm relative shear and sedimentation trajectories, and that the smallest flashes and largest rates are near the tops of updrafts.

Purpose

Together these factors lead us to hypothesize that turbulence associated with eddy-scale convective overturning (Williams, 1985; Weinheimer, 1987) is largely responsible for organizing charge into small pockets which are discharged by lightning (Coleman et al., 2003; Maggio et al. 2005). The purpose of the 2014-2016 Kinematic Texture and Lightning Experiment is to quantiatively compare turbulence inferred from weather radar data to conicident lighting flash size variability.

Methods

Use lightning flash area and flash volume to characterize energy dissipated by each flash. Ongoing work by Salinas (2015 AGU Fall Meeting) is retrieving charge densities constrained by the breakeven electric field initiation threshold.

Characterize turbulent kinematics using mobile weather radar data. Berkseth et al. (poster this session) provides more details.

Initial observations from the Kinematic Texture and Lightning (KTaL) Experiment

Eric C. Bruning¹, V. C. Sullivan¹, V. Salinas¹, S. M. Berkseth¹, P. J. Ware², and S. A. Weiss²

¹ Amospheric Science Group, Texas Tech University, Lubbock, TX; ² CIMMS/University of Oklahoma, Norman, OK

-200 East distance (km)

Cases to Date

East distance (km)

Date Storm Mode	Deployment Location:	Radiosonde Launch (UTC)	Ka-1 Scans (UTC)	Ka-2 Scans (UTC)	Possible Dual Doppler Scans (UTC)	Ka1 lat	Ka1 lon	Ka2 lat	Ka2 lon
05/25/14 Multicell	Slaton Lubbock	NA	0219-0350	0205-0346	0219-0346	33.46258 33.48718	-101.67542 -101.89252	33.39560 33.47616	-101.60680
05/26/14 Squall line	Littlefield Shallowater	NA	0353-0548	0348-0550	0353-0548	33.76336	-102.17293	33.87933 33.73708	-102.15456 -102.02688
06/07/14 MCS	Spade	NA		0144-0255				33.98316	-102.15428
06/08/14 Supercell	Roaring Springs New Deal	NA		0110-0352				33.89167 33.73732	-100.79614 -101.84326
06/09/14 MCS	Abernathy	NA		0642-0732				33.94875	-101.85426
06/29/15 Squall line	Littlefield Anton New Deal	2147	2146-0031	2127-0029	2146-0029	33.78537 33.73731 33.73734	-102.34583 -101.96632 -101.85448	33.90716 33.83704 33.73697	-102.39993 -102.20798 -101.71645
07/04/15 MCS	Olton	0447	0443-0633	0447-0632	0447-0632	34.18830	-102.16474	34.18824	-101.99068
07/06/15 Multicell	Shallowater	2121	2104-0157	2135-0204	2135-0157	33.73492	-102.02699	33.81676	-102.02745
07/07/15 MCS stratiform	Post Reese Center	0601	0539-0648	0450-0652	0539-0648	33.28581 33.66461	-101.39397 -102.00955	33.21759 33.53104	-101.43405 -102.00910
07/10/15 Multicell	S Littlefield	0116	0122-0504	0123-0506	0123-0504	33.87331	-102.32767	33.75645	-102.32774
07/10/15 Multicell	Ropesville	2300	2226-2253	2217-2253	2226-2253	33.30546	-102.13410	33.40950	-102.09339
07/11/15 Multicell	O'Donnell Near Tahoka	NA	0058-0254	0116-0255	0116-0254	32.97823 33.16708	-101.84190 -101.90841	33.96381 33.16667	-102.01155 -102.05418

7-8 June 2014: Left-moving supercell

Fewer, larger flashes as spectrum width decreases

Along the forward flank: velocity couplet and S-shaped band of elevated spectrum width associated with horizontal vorticity $\sim 0.02 \text{ s}^{-1}$

Instruments

West Texas Lightning Mapping Array

Number of stations: **Receive Frequency** Mapping Technique: Timing precision: Trigger rate (max): Typ. points per flash: Location precision Range (3D/2D): Temporal coverage:

12 (2 mobile) 60-66 MHz GPS Time of Arrival 25 ns 12,500 per second 10-1000 O(10) meters (over network) 100 km / 250 km Continuous

Monte-carlo simulation of WTLMA error characteristics

This model characterizes location precision and detection efficiency. Sources are emitted with a realistic power spectrum, and propagated to each receiver. Station locations introduce azimuthal asymmetry to errors. Use of observed receiver thresholds (environmental noise floor) introduces additional asymmetries that vary from day to day.

Acknowledgments

The participation of numerous additional students and faculty in data collection are gratefully acknowledged. Jerry Guynes continues to provide capable design and maintenance of the TTU-Ka radars. This project i supported by the National Science Foundation CAREER program, grant AGS-1352144.

BOLT: Ballooning and Observation Laboratory for Thunderstorms

Vehicle: Cabin: Sounding system

Communications

Freightliner Sprinter 2500, high roof Factory aux battery; variable high idle 2+2 seating, roof-mounted A/C Vaisala DigiCORA MW41 RS92-SGP sondes, 400 MHz 2 helium tanks and launch tube VHF radio, cellular data modem 4.5 m pneumatic mast, roof-mounted

TTU Ka-band mobile Doppler radars

Transmit Frequency Transmit Power: Transmitter Type: Antenna Type: Antenna Beamwidth: **Polarization:** Waveguide: PRF: Gate Spacing: **Receiver MDS: IF Frequency:** Pedestal System: DSP: Vehicle: Stabilization: Moments:

34.86 GHz (wavelength: 8.6 mm) 200 W peak, 100 W average TWTA, up to 50% duty cycle Cassegrain feed, epoxy reflector 0.33 degrees Linear, horizontal WR-28, pressurized Variable, up to 20 KHz 9 m (pulse compression) -118 dBm 60 MHz Orbit AL-4016 Sigmet RVP-9 Chevy C5500 Crewcab; 15' flatbed Computer assisted hydraulic leveling Reflectivity, radial velocity, spectrum width

10 July 2015 - Multicellular storm

10 15 20 Distance from radar (km

Through core of cell

Convective overturning and large spectrum width and variable resolved velocities. Flash rates of 25 min⁻¹.

-100

Dual-Doppler at RHI intersection Simultaneous scans intersected at 9 km range (vertical black line to 15 km altitude). Compared to 13 min earlier, velocities were less variable as the storm moved away from Ka1 (below, top row) and flash rates decreased to a few per minute.

