Mitigating Ground-Clutter Contamination on Polarimetric Doppler Weather Radars

David A. Warde and Sebastián Torres
Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Abstract

- Automate the detection/removal of ground clutter contamination
- More important for polarimetric Doppler weather radars
- Ground clutter contamination can
 - Artificially inflate/deflate quantitative precipitation estimates
 - Adversely affect polarimetric classification algorithms
 - Obscure Doppler-velocity signatures of weather
- Miss-identified weather signals
 - Stratiform rain/snow events (most noticeable)
 - Exhibit similar clutter-characteristics as ground clutter contamination
 - Loss of data
- Dual-polarization information can assist in identification
 - More sensitive
 - More discriminating

Weather Environment Thresholding (WET)

Identifies dual polarimetric characteristics of weather signals to mitigate miss-identification as ground clutter

Performance: CLEAN-AP/WET

Differential Reflectivity (Z_{dr})
Differential Phase (ϕ_{dp})
Correlation Coefficient (ρ_{hv})

Ground clutter contamination still a prime concern for the weather radar community

Snow Event: WSR-88D in Duluth, MN

Ground clutter contamination seen after applying ground clutter mitigation
Data loss seen after applying ground clutter filter (No Detection)