

Basic study on the lonospheric Observations of the PANSY radar; Adaptive Sidelobe Cancellation Techniques for the FAI Clutters

Introduction

□ PANSY radar ⁽¹

- ✓ A large VHF active phased array at Syowa Station, Antarctica
- ✓ Can observe Ionospheric incoherent scatterings in addition to the MST radar functionalities
- ✓ Has supplemental antenna array for Field Aligned Irregularities (FAIs)
- □ Ionosphere observation of the PANSY radar
 - ✓ FAIs are assumed to be clutters because of their strong coherent backscattering (Fig. 1)
- **D** Objective

⇒To separate FAI echoes by adaptive beam synthesis utilizing both the main and FAI array ¹ Sato et al., J. Atmos. Sol. Terr. Phy., 118A, 2-15, 2014

Method

- □ Norm Constrained Tamed Adaptive (NC-TA) ⁽²
 - ✓ Based on Capon beamformer
 - ✓ Has additional constraint about the norm of the optimal weight **w** to control the SNR loss \Rightarrow Because the weight norm increase directly connects to the increase of the noise level
 - ✓ Norm constraint can be calculated by the desired SNR loss L
- **Gain weighting**
 - ✓ Can handle large main array + small sub array
 - \checkmark The steering vector $A(\theta, \phi)$ is weighted by the directional gains of each channel to the desired direction

² Hashimoto et al., J. Atmos. Oceanic Technol., 31, 2749–2757, 2014

Experiment

- □ A test observation is made on Feb 15, 2015
 - ✓ A Helicopter is targeted assuming FAI clutter
 - ✓ Helicopter has GPS track recorder as the "true" position" for the phase calibration (Note phases of the main array can be known by self test)
 - \checkmark 16 channels (8 for main array, 8 for FAI array)

Other Radar Parameters

47MHz
520 kW
1045 Crossed Yagi (vertical)
24 Yagi (30° elevation)
8 ms
150 m

T. Hashimoto¹, K. Nishimura², M. Tsutsumi², T. Sato¹ and K. Sato³ ¹ Kyoto University ² National Institute of Polar Research (NIPR) ³ The University of Tokyo

Fig. 1 Ionosphere observation of the PANSY radar and FAI clutter

Fig. 2 The model for adaptive signal processing

Helicopter Echoes

□ Characteristics of the helicopter echoes

✓ The target has 3 blades for the main roter

✓ Backscattering from a blade can only be observed when the line of sight becomes perpendicular to the blade

 \Rightarrow Both the time series and the Doppler spectrum of the roter signal become series of impulses (Fig. 4)

For this case, the roter has 3 blades and rotates about 400 RPM

□ Phase Calibration of the FAI array

 \checkmark Applied the low pass filter to extract the signal from the helicopter body (shown in a rectangle of Fig. 4)

 \checkmark Performed the least square fitting between the phases of the observed signals and the true phases calculated from the antenna-helicopter distances obtained by GPS \Rightarrow Phase errors are still remaining, and the gradients are different channel-by-channel (Fig. 5) \Rightarrow Caused by inaccuracy of GPS truth?

Results and Discussions

□ Two methods are compared on the same data ✓ Ordinary 8-channel uniform NC-TA by main array only ✓ 9-channel Gain-weighted NC-TA with main and FAI array

 \checkmark Main array is nonadaptively synthesized into 1 channel (Fig. 6)

✓ FAI array is used separately (8channel) \Rightarrow Permissive SNR loss is set to 0.5 dB for both settings \Rightarrow Desired direction is set to the zenith

Gain-weighted NC-TA by the FAI array worked fine \checkmark Showed better performance than the uniform

NC-TA against the helicopter clutters in front of the FAI array (Fig. 7)

 \checkmark Ground clutters is difficult to suppress because the FAI array does not have the sensitivity to other directions

Conclusion and Future Works

□ The gain-weighted NC-TA is tested with the FAI array of the PANSY radar

□ The method worked well against the helicopter clutters • Further accuracy is needed for the phase calibration • Now working on the more plactical observation data ✓ Ionosphere observation with whole 55-channels main array and FAI array

