Implementation of Terrain Resolving Component by Immersed Boundary Method for Variational Doppler Radar Analysis System (VDRAS)

Introduction

- A 4DVAR Doppler radar retrieval system for high-resolution and rapid updated analysis. Installed in more than 20 sites since 1998. (Sun and Crook, 1997)
- Cloud model inside the system has no ability to resolve terrain.
- Improve the accuracy of analysis even short-term Quantitative Precipitation Forecast (QPF) by implementing terrain resolving ability for VDRAS.

Ghost-cell immersed boundary method (GCIBM)

- Tseng and Ferziger (2003)
- Ghost-cell: first grid point under terrain surface (immersed boundary).
- Imposing terrain boundary condition implicitly by updating ghost-cell value.
- Update every time step in model integration. Terrain effect gradually obtained.
- Variables updated: U, V, W, θ , qt and qr.

Fig. 1. Schematic of domain with an immersed boundary. Triangle points (**(**) represent grid points in the flow region, Blue circle points (GC) locate the ghost-cells and red circle points are the image points (IP) of ghost cells. The line connected with IP and **GC** is perpendicular to the immersed boundary.

$$w = u \frac{dh}{dx} + v \frac{dh}{dy}$$

2-D linear mountain wave simulation

- Simulated for comparisons with the available analytic solution (Smith, 1980).
- Isothermal atmosphere (dT/dZ = 0), T = 250 K. Bell-shaped mountain.
- Parameters: wind speed = 20 ms^{-1} , terrain half-width = 10 km, max. height = 1 m.
- Model resolutions: $\triangle x = 2 \text{ km}, \ \triangle z = 200 \text{ m}.$

simulation at 30000 seconds (Ut/a= 60). (Right): Analytical solution ; both the magnitudes have been amplified by 1000.

Sheng-Lun Tai¹, Yu-Chieng Liou¹, Juanzhen Sun², Shao-Fan, Chang¹

¹Department of Atmospheric Sciences, National Central University, Taiwan ²National Center for Atmospheric Research, Boulder, Colorado, USA

Parallel forecast with WRF model

- Both models are initialized by the same sounding profile (squall line).
- Microphysic scheme: Kessler (warm rain process).
- Terrain: half-width = 10 km, maximum height = 2 km.
- VDRAS cloud model resolutions: $\triangle x = 1 \text{ km}$, $\triangle z = 250 \text{ m}$. (161 x 141 x 50 grids)

Fig. 3. Vertical cross sections (along Y=71) of rainwater mixing ratio forecast results: Upper panels represent WRF model forecasts from 1th to 5th hour; lower panels are from modified VDRAS cloud model.

Fig. 4. The temperature perturbation forecast results at Z=5 level: Upper panels represent WRF model forecasts from 1th to 5th hour; lower panels are from modified VDRAS cloud model

■ VDRAS cloud model with IBM could generate similar convection evolution as WRF model. Cold pool propagation dominates convection development.

Fig. 5. The Hovmoller of forecast diagram mixing ratio rainwater along Y=71 at Z=10 level by (a) WRF model and (b) VDRAS cloud The Y-axis model. ranges from 0 to 6 hours.

OSSE: data assimilation experiment

- Verification for adjoint model and assimilation scheme.

ratio (gkg⁻¹);(c), (d): U-wind (ms⁻¹); (e), (f): Vertical velocity (ms⁻¹)

- Radar data successfully assimilated into model.

- completeness of modified adjoint model.
- analysis and even short-term QPF.

References and acknowledgments

Sun, J. and N. A. Crook, 1997: Dynamic and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661. Tseng, Y., and J. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593-623. This research is sponsored by Central Weather Bureau of Taiwan, under Grant MOTC-CWB-103-M-06.

■ Virtual radial wind and rainwater mixing ratio from WRF are assimilated (full domain coverage).

Dynamic variables and microphysic variable corrected by observations.

Summary and future work

Parallel forecast shown the terrain-resolving capability of modified forward model.

• OSSE results display the surprising performance of assimilation scheme, and proved the

(e), (f) : Vertical velocity (ms⁻¹)

Application to real cases with terrain-interacted convections, which can provide convective-scale