
SIMULATED DOPPLER RADAR & RANKINE MODEL  
 

• Simulated Doppler velocities are produced by scanning a 
radar across Rankine vortical and convergent flows. 

• In (1), 𝑉𝑅 at lowest elevation angle is computed from 
         𝑉𝑅 𝑅𝑖 , 𝛼𝑜, 𝛽𝑘 = 𝑈 sin 𝛾 + 𝑉cos 𝛾 cos 𝛼𝑜 ,  (10) 
 where 𝑈 is the radial component of an axisymmetric 

convergent flow, 𝑉 is the tangential component of an 
axisymmetric cyclonic vortex, and 𝛾 is the angle between 
the tangential direction component 𝑉  and the radar 
viewing direction 𝛽𝑘 at a point. 

• 𝑈 and 𝑉 can be modeled using the Rankine formulas, 
given by 

                                    
𝑈 = 𝑈𝑥

𝜌

𝑅𝑥

𝜀

𝑉 = 𝑉𝑥
𝜌

𝑅𝑥

𝜀                           (11) 

 where 𝑈𝑥 , 𝑉𝑥  are, respectively, radial and tangential 
velocity peaks, 𝑅𝑥 is core radius, 𝜌 is radius from center, 
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INTRODUCTION 
 

 Davies-Jones and Stumpf (1977, 28th Conf. on Radar 
Meteorology, pp. 313-314) advocated using the detection 
and measurement of significant circulation around and 
areal contraction rate of a curve as a potential method for 
giving advanced warnings of tornadoes. 

 Circulation (rate of areal contraction) is the line integral 
around a closed curve of velocity tangential (inward 
normal) to the curve. 

 Circulation and areal contraction rate may be more useful 
than differential single-Doppler velocities in the 
characteristic velocity couplet for detecting and 
measuring the strength of convergent tornadic 
mesocyclones at low altitudes because of the following 
reasons: 
a.  Doppler rotational velocity (half the velocity 
difference between the two peaks in the velocity 
couplet) does not separate vortical and convergent flow, 
b.  circulation and areal contraction rate are (1) less scale 
dependent, (2) are tolerant of noisy Doppler velocity 
data, and (3) are relatively insensitive to range and 
azimuth. 

3-D VELOCITY COMPONENTS OF THE RADAR TARGETS 
 

• Since a Doppler radar scans the 3-D velocity components 
of a target with a volume scan, it is expeditious and 
computationally economical to determine the kinematic 
properties of the velocity field in the conical surfaces of 
constant elevation angle. 

• Mathematically, the velocity components defined in a 
right-hand spherical coordinate system are 

                                     𝐕 = 𝑉𝑅𝐑 + 𝑉𝛼𝛂 + 𝑉𝛽𝛃 , ,                   (1) 

 where 𝑉𝑅 is the radial component of the target in the 
radar viewing direction, 𝑉𝛼 and 𝑉𝛽 are both perpendicular 

to the radar viewing direction. 𝑉𝛼 is along the upward 
inclined normal in the vertical plane containing the radar 
beam, and 𝑉𝛽 is horizontal and perpendicular to the right 

of the beam in a constant 𝛼𝑜-surface. 

• Here, 𝐑 , 𝛂 , 𝛃  are the unit basis vectors of the spherical 
coordinate system. 

CIRCULATION 
 
• By Stokes’ theorem, a circulation  Γ around the boundary 

C of an area A in the 𝛼𝑜-surface is given by 

                            Γ =  (𝑉𝑅𝑑𝑅 + 𝑉𝛽𝑅 cos 𝛼𝑜𝑑𝛽)
𝐶

  ,        (2) 

 where the first term on the right-hand side of (2) is the 
observed circulation around C with 𝑉𝛽 ignored. 

• The so-called “cell circulation” Γ𝑜𝑏  around the 𝑖, 𝑘 grid cell 
is computed from the first term on the right-hand side of 
(2) at the midpoint of each cell as 

 𝑑Γ 𝑖+1 2 ,𝑘+1 2 𝑜𝑏
= 

∆𝑅
2 [𝑉𝑅 𝑅𝑖 , 𝛼𝑜, 𝛽𝑘+1 + 𝑉𝑅 𝑅𝑖+1, 𝛼𝑜, 𝛽𝑘+1 − 

                   𝑉𝑅 𝑅𝑖+1, 𝛼𝑜, 𝛽𝑘 −𝑉𝑅 𝑅𝑖 , 𝛼𝑜, 𝛽𝑘 ]  ,              ( 3)           
 where 𝑖 is the index in the range direction, 𝑘 is the index 

in the azimuth direction, and ∆𝑅 = 𝑅𝑖+1 − 𝑅𝑖 is the range 
increment. 

• Circulation in (3) is additive because the circulation 
around the outer perimeter of a union of contiguous grid 
cells is simply the sum of the circulations around the 
perimeter of each grid cell. 

• Thus, the circulation around C by the line-integral method 
of Davies-Jones (1993, MWR, vol. 121, pp. 713-725) is 
computed, given by 

                          Γ =
Λ 𝑉𝑅,𝑅

2
− cos 𝛼𝑜

Λ 𝑅𝑉𝛽,𝛽

2
  ,                (4) 

 where Λ(𝑉𝑅 , 𝑅)/2  is the observed circulation, and 
Λ 𝑓, 𝑔 ≡ (𝑓1𝑔2 − 𝑓2𝑔1 + 𝑓2𝑔3 − 𝑓3𝑔2 + ⋯ 

     +𝑓2𝑀+3𝑔2𝑀+4 − 𝑓2𝑀+4𝑔2𝑀+3 + 𝑓2𝑀+4𝑔1 − 𝑓1𝑔2𝑀+4)  . 
• The method fits a piecewise-linear velocity field to the 

observation (linear between adjacent points on the 
circle). 

• The element of area 𝐴  in (5) on the 𝛼𝑜 -surface 
(Hildebrand 1962, p. 304) is  

                            𝑑𝐴 = cos 𝛼𝑜𝑅 𝑑𝑅 𝑑𝛽  .                           (6) 
• Differentiating (6) with respect to time 𝑡 and integrating 

by parts give the rate of areal expansion (the negative of 
the areal contraction rate) on the 𝛼𝑜-surface,   

              𝐴𝑡 = −cos 𝛼𝑜  𝑉𝑅𝑅𝑑𝛽
𝐶

+  𝑉𝛽𝑑𝑅
𝐶

  ,            (7) 

 where the first and second terms on the right-hand side 
of (7) are the observed and unobserved effluxes. 

• Using Davies-Jones’ line-integral method, the expansion 
rate of the area A enclosed by C is 

                    𝐴𝑡 = −cos 𝛼𝑜
Λ 𝑅𝑉𝑅,𝛽

2
+

Λ 𝑉𝛽,𝑅

2
 ,               (8) 

 where the last term on the right-hand side of (8) is 
unobserved. 

• Ignoring the last term on the right-hand side of (7), the 
so-called “cell areal expansion rate” represents the 
observed expansion rate of the 𝑖, 𝑘 grid cell calculated at 
the midpoint of the cell and is therefore obtained by 

         
𝑑𝐴𝑖+1 2 ,𝑘+1/2

𝑑𝑡 𝑜𝑏
= 1

2
cos 𝛼𝑜 𝛽𝑘+1 − 𝛽𝑘 × 

          𝑅𝑖+1 𝑉𝑅 𝑅𝑖+1, 𝛼𝑜, 𝛽𝑘+1 + 𝑉𝑅 𝑅𝑖+1, 𝛼𝑜, 𝛽𝑘      
     −𝑅𝑖 𝑉𝑅 𝑅𝑖 , 𝛼𝑜, 𝛽𝑘+1 + 𝑉𝑅 𝑅𝑖 , 𝛼𝑜, 𝛽𝑘   .            (9) 
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AREAL CONTRACTION RATE 
 

• The divergence (𝛿) in a constant 𝛼𝑜-surface is percentage 
areal expansion per unit time of the fluid element, given 

by                                      𝛿 =
1

𝐴

𝑑𝐴

𝑑𝑡
  ,                                (5) 

 where 𝐴  is the area of the fluid element, and 
𝑑𝐴 𝑑𝑡 ≡ 𝐴𝑡 > 0 (< 0)  is the rate at which the area of 
the curve expands (contracts). 

•  For a horizontal convergent flow, negative areal 
expansion rate (𝐴𝑡 < 0) corresponds to contraction. 

 𝜀 = +1,−1  is the exponent that governs 
the inner velocity (𝜌 ≤ 𝑅𝑥)  and outer 
velocity profiles 𝜌 > 𝑅𝑥 , respectively. 

FIG. 1.  Simulated, storm-relative horizontal (black) and Doppler (red) wind vectors with (a) convergent 
flow (𝑈𝑥=-25 m s-1, 𝑉𝑥=0), (b) combined convergence and rotation (𝑈𝑥=-17.8 m s-1, 𝑉𝑥=17.8 m s-1), and (c) 
rotational flow (𝑈𝑥=0, 𝑉𝑥=25 m s-1) are plotted at 0.5o-elevation angle.  Simulated, positive (negative) 
Doppler velocities represent flow away from (toward) the radar, shown by red (green) contours with 
contour interval of 5 m s-1.  Simulated, zero Doppler velocity contour (black) represents flow perpendicular 
to the radar viewing direction.  Blue Doppler signature center is located at 25 km north of a simulated 
Doppler radar.  Blue, dashed circle represents an axisymmetric Rankine core diameter (2𝑅𝑥) of 5 km with 
its radial (𝑈𝑥) and tangential (𝑉𝑥) velocity peaks. Range increment is 240 m.  The Doppler velocity pattern 
in (d)-(f) rotates counterclockwise, reflecting a change from (a) convergent flow through (b) combined 
convergence and rotation to (c) rotational flow. 

FIG. 2.  Cell circulations in (a)-(c) and cell areal contraction rates in (d)-(f) are calculated.  Positive (red) 
and negative (green) contours with zero (black) contour are indicated with contour interval of 0.5 m2 s-1. C 
stands for Doppler cyclonic shear; A for Doppler anticyclonic shear; CNV for Doppler convergence; and DIV 
for Doppler divergence, as they correspond to red Doppler wind vectors (Figs. 1a-c). 

FIG. 3.  Circulations [red dotted curves in (a)-(c)] and areal 
contraction rates [blue dotted curves in (d)-(f)] are functions of 
circle radius from the signature center, as are calculated from 
the first term on the right-hand side of (4) and (8), respectively. 

CONCLUSIONS AND ON-GOING WORK 
 

• Circulation and areal contraction rate are useful because (a) they help separate vortical and convergent 
flows, and (b) circulation around a circle is a better measure of vortex strength than Doppler rotational 
velocity. 

• A potential vortex (the outer part of the Rankine vortex) and a sink each produce spurious 
“quadrupole” patterns in both observed vorticity and divergence.  These patterns produce false 
readings in the potential vortex. 

• For a circle centered on the vortex, the quadrupole contributions to circulation and areal contraction 
rate cancel. 

• In our on-going work, we will demonstrate that circulation is much less range and azimuth dependent 
than Doppler rotational velocity is. 
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