

Toshiba Corporation, Tokyo, Japan ² Osaka University, Osaka, Japan ³ National Institute of Information and Communications Technology (NICT), Tokyo, Japan

Introduction

An increasing number of disasters caused by extreme weathers such as localized heavy rainfalls and tornados are taking place all over the world. One main cause is rapid growth of cumulonimbus clouds. Generally, lifecycle of a cumulonimbus cloud is about 30 minutes. Weather radars with rapid scanning capability are more than ever required. Toshiba is developing a dual-polarization phased-array weather radar.

Table 1. Development Schedule

Voars	Phase
	Пазс
2012-2014	1st phase: Development of underlying technology - Funded by Ministry of Internal Affairs and Communication
2014-2018	2nd phase: Development of radar and demonstration - Funded by Cross-ministerial Strategic Innovation Promo - Joint effort with Osaka University, and National Institute Communications Technology (NICT) - Will develop by early 2017 a dual-pol phased-array wea - Will demonstrate its capabilities by 2018

Table 2. Comparison of Radar Performances

	-		
Item	X-Band Dual Pol Radar with Parabolic Antenna	Single Pol Phased-Array Radar	Dual P Radar
Observation Range	Radius of 60km	Radius of 60km	Radius
Sensitivity	Less than 1mm/h @ 60km	Less than 1mm/h @ 60km	Less tl @ 60k
Temporal Resolution	5 min to 10 min	30 sec to 60 sec	30 sec
Polarization	Dual Polarization	Single Polarization	Dual F
Beam Shape	Pencil Beam for Both Transmission and Reception	Transmission: Fan Beam Reception: Pencil Beam	Transr Recep
Beam Scanning	Mechanical for Both AZ/EL	AZ: Mechanical EL: Electronic	AZ: Me EL: Ele
Antenna	Parabolic	Phased-Array	Phase

Requirements for development of dual-pol phased array weather radar: - compact, low-cost dual-pol antenna with high cross polarization discrimination

- compact, low-cost receiving front-end to reduce cost per channel of system

Development of Dual-Polarization Phased-Array Weather Radar

Hiroshi Yonekubo¹, Masakazu Wada¹, Fumihiko Mizutani¹, Hideto Goto¹, Akiko Yamada¹, Tomoo Ushio², Shinsuke Satoh³

front-end is realized on a 3mm x 3mm bare chip size for X-band.

Based on the preliminary results of the radar cell we will be able to develop a dualpolarization phased-array weather radar.