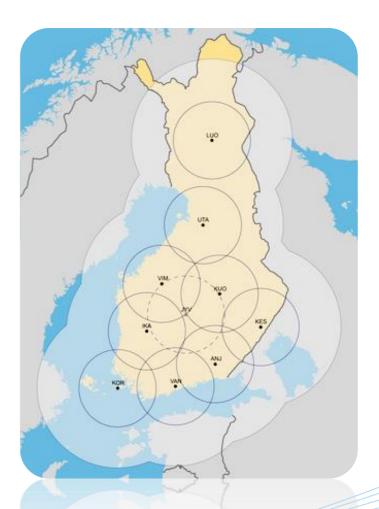


Operational applications of dualpolarized Weather Radar in Finland

LJUBOV LIMAN

Finnish Meteorological Institute (FMI)

Helsinki, Finland


□ End-users of Radar data and products

□ The development based on dual-polarization

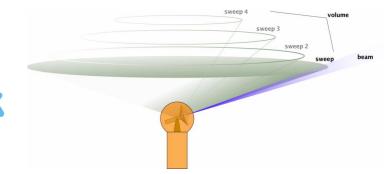
- What has been improved?
- What are we working on right now?
 - What is planned for the near future?

- FMI weather radar network consists of nine C-Band Doppler radars
- Eight Dual-polarization Vaisala WRM200
 C-Band Doppler radars
- One single-polarization Selex-Gematronik HW & Vaisala-Sigmet SW C-Band Doppler radar
- The new tenth dual-polarization radar will be installed in October 2015

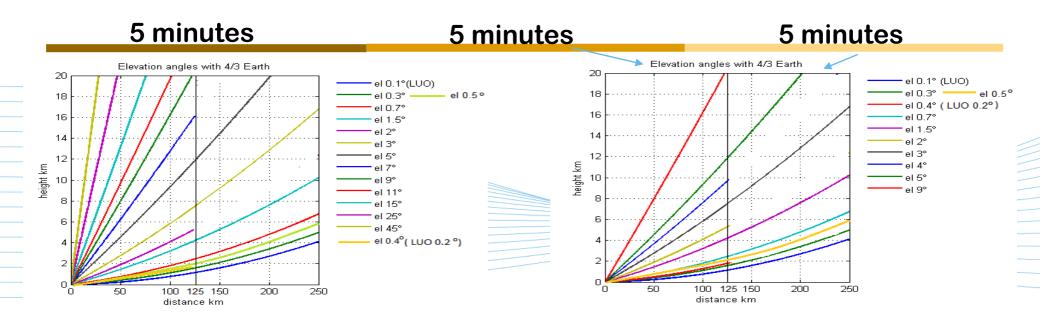
Vaisala Dual-pol C-band Weather Radar WRM200

Characteristics of FMI radars (range from...to)

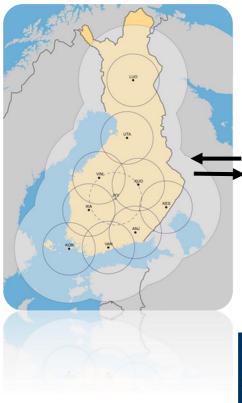
tower height	from 19.0 m to 37.0 m		
beamwidth	0.94° 0.98°		
wavelength	5.310 cm 5.340 cm		
peak power	195 kW 260 kW		
H/V	-0.94 dB 0.30 dB		
radar constant (H/H+V)	61.99/64.99 dB 63.30/66.60 dB		
antenna gain	45.10 dB 45.80 dB		
ZDR bias	0.38 dB 1.19 dB		
LDR bias	-2.00 dB 0.76 dB		



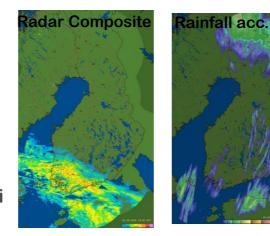
Technical Specifications:


- Antenna diameters: 4.5 m
- Radome: 6.7 m
- Antenna beam width: 0.98 deg
- Transmitter: magnetron
- Frequency: 5.6 GHz
- Wave length: 5.3 cm
- Pulse Width : 0,85µs/ 2,0 µs
 - Pulse peak power: 250 kW
 - Signal Processor : RVP900
 - Software : IRIS

Scanning strategy



- PPI_Plan Position Indicator scans: the antenna passes through 14 different elevation angles from 0.3° (0.1°, 0.5°) to 45.0 °.
- RHI_Range-Height Indicator scans: two azimuth angles, elevation from 0 ° to 60 °.
- Scanning to be repeated at least every 15 minutes .



Radar.fmi.fi http://radar.fmi.fi/

The Nordic countries Radars network

Physical state

An advanced Weather Radar network for the Baltic Sea Region The Gulf of Finland

Forecast


> 40 30...40 24...30 18...24 12...18

8...12 0...8 -6...0

End-users of Radar data and products

and FMI forecast, warning process and research

End-users of Radar data and products

The radars are important forecasting tools for meteorologists. The weather forecaster have always open:

- SmartMet (It is a software tool for visualizing and editing meteorological data)
- Gr2Level (Gr analyst) (It is a commercial, independent IRIS software extension that allow look at the radar data through a Website)

http://www.grlevelx.com/grlevel2/

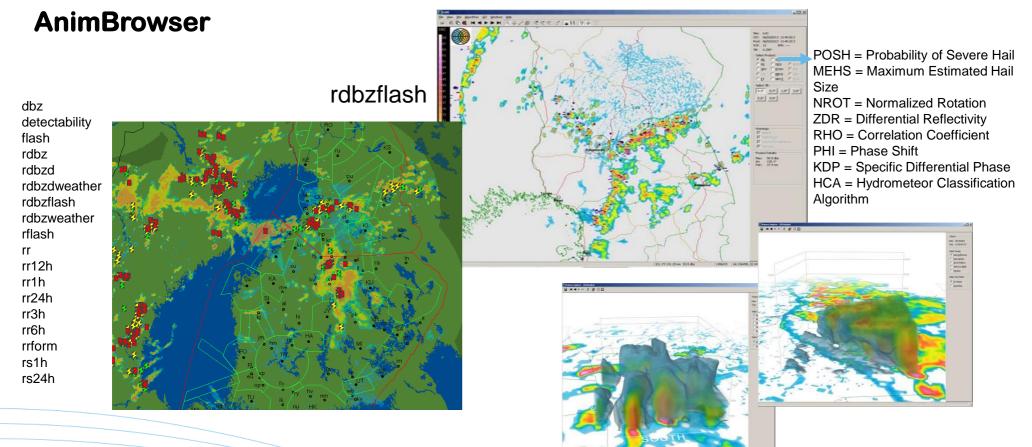
Deer Browser

http://radar.fmi.fi/products/fmi/radar/ iris/deerbrowser.html

AnimBrowser

http://weather.weatherproof.fi /animbrowser

Radar.fmi.fi

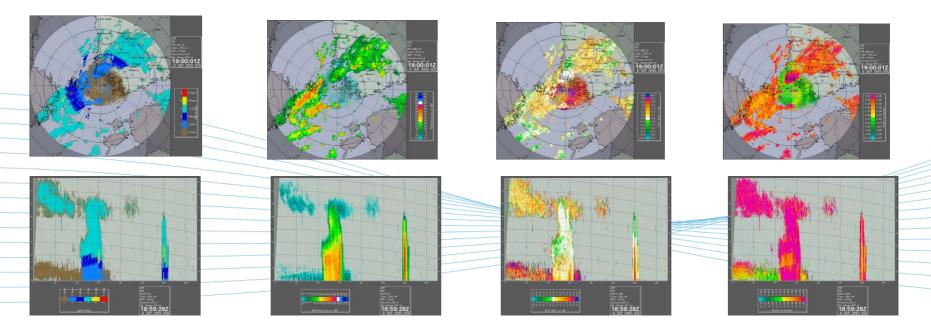

http://radar.fmi.fi/

Weather forecaster Paavo Korpela, photo by E.Saltikoff

Gr2Level (Gr analyst)

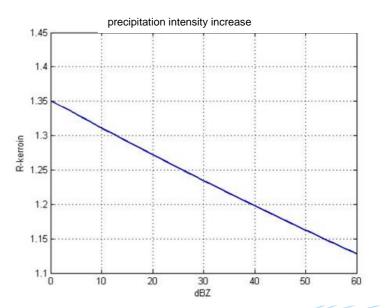
composite image

- the radar and rain observations
- the radar and lightning
- 15 minute time step


- a single radar animation
- 5 minute time step
- cross-sections (line or 3D), different height angles
- the radar and lightning

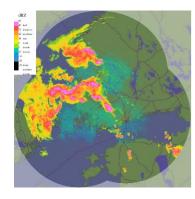
What has been improved?

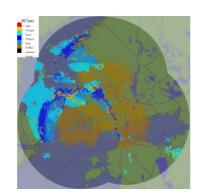
HydroClass-products from individual radars to http//radar.fmi.fi.

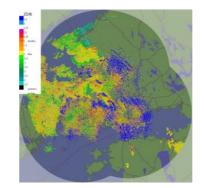

PPI	HClass	dBZ	ZDR	RhoHV
RHI	HClass	dBZ	ZDR	RhoHV

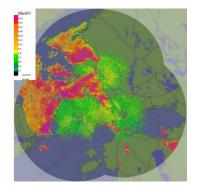
What has been improved?

- Dual-pol data input to SmartMet
- Range Resolution: change in all the radars 500m→ 250m
- Radar calibration : ZDR and LDR calibration
- Rain attenuation correction: dBZc and ZDRc
- Clutter mitigation: PMI thresholding is applied
- Rainfall intensities calculation for Finnish climate R (Z)= 0.029185035Z^{0,65359477} (Leinonen et. al.: J. Appl. Meteor. Climatol, 2012.





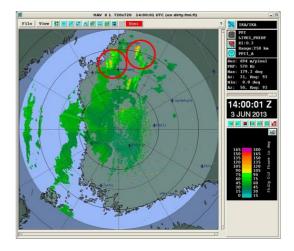

The development based on dual-polarization What has been improved?

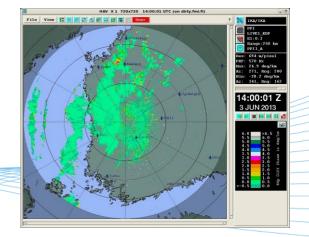

Classification of phenomena

Birds, insects

Increase the radar's sensitivity

- Sensitivity increase by dBZE
- In dBZE Z is calculated by comparing the two channels, where the noise level is improved, and thus the sensitivity.
- +2dB for 32 samples pulse

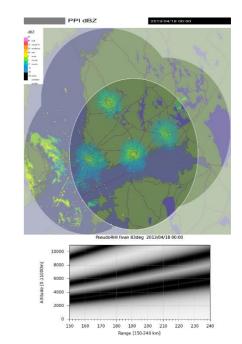

What has been improved?


Propagation attenuation correction

- Propagation attenuation based on the PhiDP ratio:
 - raw data improvement
 - in rain attenuation correction is 10 dB
 - an algorithm in operational use

Precipitation intensity

- Precipitation intensity by KDP
 - For Finnish climate *R (Kdp)= 21.0Kdp*^{0,720} (Leinonen et. al, 2012.)
 - Negative issue : requires heavy rain> 5 mm /h
 - Positive issue: KDP_solved the radome attenuation problem in heavy rain


The development based on dual-polarization What are we working on right now?

Birds movements forecasting

Develop of the radar bird detection product. Based of dual-pol variables.

Precipitation intensity

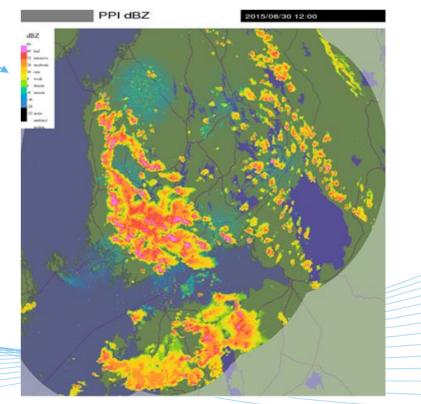
Polarimetric R(Z) + R(KDP). Combined with the variable Z and KDP ratio-based estimate of the rain as one of the algorithm (*Leinonen et. al.: J. Appl. Meteor. Climatol,* 2012.)

What are we working on right now?

Hail detection

- C-band dual-polarization weather radar hail signatures observed in South Finland.
- Dual-polarization based QPE in presence of hail contamination

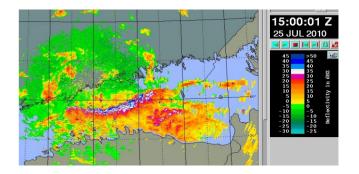
Image: reductive version Image: reductive v

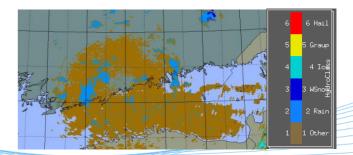

Radar vs. WXT510 vs. POH

R(Kdp)

What are we working on right now?

- Heavy rain evaluation of polarization
 The Radar quantitative precipitation
 estimation(*QPE*) development. The starting
 point for Brandon Hickman algorithm.
- Removal of residual ground clutter and echoes by non-meteorological targets
- Hail correction algorithm
- The optimal rainfall intensity-reflection conversion to Finnish conditions


What is planned for the near future?


SmartMet

HydroClass- especially hail and graupfel product

- AnimBrowser
 HydroClass composite
- Snowfall intensity
 R(ZE) +R(KDP) relation
- Clutter mitigation
 - Sea clutter

PMI-thresholding affect to all nonmeteorological echoes. Finding the right threshold level requires verification.

Thank You

FINNISH METEOROLOGICAL INSTITUTE

Ljubov Joanna Liman Research scientist, Satellite and Radar Applications group, Meteorological Research, Finnish Meteorological Institute e-mail : ljubov.liman@fmi.fi tel.: +358 29539 5720

FMI Radar Teem e-mail : tutkatiimi@posti.fmi.fi

Ilmatieteen laitos

Erik Palménin aukio 1, 00560 Helsinki PL 503, 00101 Helsinki, puh. 029 539 1000

Meteorologiska institutet Erik Palméns plats 1, 00560 Helsingfors PB 503, 00101 Helsingfors tel. 029 539 1000

Finnish Meteorological Institute Erik Palménin aukio 1, FI-00560 Helsinki P.O.Box 503, FI-00101 Helsinki tel. +358 29 539 1000

WWW.FMI.FI

Twitter: @meteorologit ja @llmaTiede Facebook: FMIBeta